3D & 4D ULTRASONOGRAPHY IN ABNORMALITIES OF FETAL

ABDOMEN

Essay

Submitted for fulfillment of Master Degree in Radio-diagnosis

By

Doaa Ahmed Abd el Aziz Mohamed

Supervised by

Prof.Dr. Hassan Ali Hassan Elkiky

Professor of Radio-Diagnosis Faculty of Medicine- Cairo University

Dr. Noha Hosam Eldin Ibrahim Behairy

Lecturer of Radio-diagnosis Faculty of Medicine -Cairo University

> Faculty of Medicine Cairo University 2009

Acknowledgments

First of all, I would like to thank my **God** who made me able to do this work.

Then, I would like to thank **Prof.Dr.** Hassan Ali Hassan Elkiky professor of Radiodiagnosis, faculty of medicine, Cairo University for his scientific guidance and continuous stimulation.

Many thanks to **Dr. Noha Hosam Eldin** *Ibrahim Behairy* lecturer of Radiodiagnosis, faculty of medicine, Cairo University for her direct supervision and help throughout this work.

Abstract

Three-dimensional ultrasonography provides several tools (e.g., multiplaner imaging, surface rendering, volume rendering, and color power Doppler imaging). Also it can be used for studying the fetal circulation and surrounding anatomic structures (Lee et al., 2003).

Post-processing techniques of 3D ultrasound has greatly enhanced our knowledge of fetal abdominal anomalies and contributed to our understanding of how these affect pregnancy outcome (Simona et al., 2002).

The advantages of 3DUS and 4DUS in certain areas are obvious. Its use in assessment of fetal abdominal anomalies is already implemented by most centers. The use of this tool in applying color Doppler, in guiding needles for puncture procedures, as well as in assessing the fetal circulations, are under close research evaluation (Kurjak et al., 2007).

Key words : 3d & 4d ultrasonography in abnormalities of fetal abdomen

Table of Contents

	Page
Introduction	1
Aim of work	3
Normal ultrasonic developments of fetal abdomen	4
Basics of 3D,4D & 3D Doppler ultrasound	19
Applications of 3D,4D& 3D Doppler ultrasound	37
Abnormalities of fetal abdomen	59
Normal and special fetal abdominal biometry	122
Summary	128
References	130
Arabic Summary	

List of Figures

Fig. 1:	2DUS image of gestation sac at 4 weeks of
	gestation.
Fig. 2:	2DUS image of gestation sac at 5w+4d of
	gestation.
Fig. 3:	2DUS image of yolk sac at 5weeks of gestation.
Fig. 4:	2DUS image of yolk sac at 6weeks of gestation.
Fig. 5:	2DUS image of the embryonic pole at 7weeks.
Fig. 6:	2DUS image of umbilical cord at 24 weeks.
Fig. 7:	2DUS image showing normal fetal diaphragm at
	28 weeks.
Fig. 8 :	2DUS image with color Doppler showing
	physiological herniation of the mid gut at 10
	weeks.
Fig. 9:	2DUS image showing fetal liver and stomach at 14
	weeks of gestation.
Fig. 10:	2DUS image showing echogenic bowel.
Fig. 11:	2DUS image of fetal abdomen showing GB at 28
	weeks
Fig. 12:	2DUS image of normal fetal kidneys at 13 weeks.
Fig. 13:	Diagram showing the relation between umbilical
	vein and ductus venosus.
Fig. 14:	2DUS image showing fetal abdominal aorta at 25
	weeks.
Fig. 15:	2DUS image showing fetal inferior vena cava at 25
	weeks.
Fig. 16:	Diagram showing reconstruction of 3D images.
Fig. 17:	Multiplanar display of the 3DUS in three
1	

	orientations.
Fig. 18:	3DUS reconstructed image of cord insertion at 25
	weeks.
Fig, 19:	3DUS reconstructed image of fetal urinary bladder
	at 25 weeks.
Fig. 20:	3DUS reconstructed image of fetal kidneys at25
	weeks.
Fig. 21:	3DUS reconstructed image of omphalocele at 33
	weeks.
Fig. 22:	3DUS image showing dimensions of an anechoic
	cyst.
Fig. 23:	Graph for hepatic volume in relation to fetal
	weight.
Fig. 24:	3DUS with VOCAL mode to estimate volume of
	fetal stomach.
Fig. 25:	4DUS sequence showing fetal behavior at
	12weeks.
Fig. 26:	2DUS &3DUS surface rendering of bladder
	obstruction at 20 weeks.
Fig. 27:	3DUS sequence of fetal cystoscopy at 20 weeks.
Fig. 28:	2DUS image of omphalocele at 12 weeks.
Fig. 29:	2DUS image of omphalocele at 19 weeks.
Fig. 30:	3DUS of omphalocele.
Fig. 31:	3DUS & 2DUS images of gastroschisis at 33
	weeks.
Fig. 32:	2DUS image & 2D color Doppler of gastroschisis
	at 13 weeks.
Fig. 33:	3DUS image showing left diaphragmatic hernia at

	24 weeks.
Fig. 34:	3DUS image showing right diaphragmatic hernia
	at 25 weeks.
Fig. 35:	2DUS image showing small stomach in case of
	esophageal atresia at 30 weeks.
Fig. 36:	3DUS images with different modes of esophageal
	atresia at 30 weeks.
Fig. 37:	2DUS image of duodenal atresia at 28 weeks.
Fig. 38:	2DUS image of duodenal atresia at 22 weeks.
Fig. 39:	2DUS image of intestinal obstruction at 22 weeks.
Fig. 40:	2DUS image showing dilated bowel loops at 24
	weeks.
Fig. 41:	2DUS image showing dilated bowel loop in case
	of imperforted anus at 38weeks.
Fig. 42:	2DUS image showing ecogenic bowel at 22weeks.
Fig. 43:	2DUS image showing echogenic meconuim in
	colon at 34 weeks.
Fig. 44:	2DUS image of gastric pseudomass at 18 weeks.
Fig. 45:	2DUS image of duplication anomaly at 33weeks.
Fig. 46:	2DUS image of gastric duplication cyst.
Fig. 47:	2DUS image showing meconium peritonitis.
Fig. 48:	2DUS image of meconuim pseudocyst at 18
	weeks.
Fig. 49:	2DUS images of liver hemangioma at16 and 18
	weeks.
Fig. 50:	2DUS image showing exophytic hepatic
	hemangioma at 30 weeks.
Fig. 51:	2DUS image showing liver cyst at 22 weeks.

Fig. 52:	2DUS image showing choledochal cyst.
Fig. 53:	2DUS image showing intrahepatic calcifications.
Fig. 54:	2DUS image showing fetal gall bladder stones.
Fig. 55:	2DUS image & color Doppler showing unilateral
	renal agenesis.
Fig. 56:	2DUS images showing mild hydronephrosis at 13-
	14 weeks.
Fig. 57:	2DUS image showing megacystis 12 weeks.
Fig. 58:	2DUS image showing hydronephrosis at 30
	weeks.
Fig. 59:	2DUS images showing moderate & sever
	hydronephrosis.
Fig. 60:	2DUS image of sever hydronephrosis at 36 weeks.
Fig. 61:	2DUS image in case of posterior urethral valve at
	32 weeks.
Fig. 62:	2DUS image showing infantile polycystic kidneys
	at 34 weeks.
Fig. 63:	2DUS image showing infantile polycystic kidneys
	at 22weeks.
Fig. 64:	2DUS image showing multicystic renal dysplasia.
Fig. 65:	2DUS images showing multicystic renal dysplasia
	14&18 weeks.
Fig. 66:	2DUS image showing congenital mesoblastic
	nephroma at 36 weeks.
Fig. 67:	2DUS image showing hydrometrocolpos at 35
	weeks.
Fig. 68:	2DUS & MRI images showing neuroblastoma.
Fig. 69:	2DUS image showing sub-diaphragmatic

	extralobar pulmonary sequestration.
Fig. 70:	2DUS image showing monochorionic diamniotic
	twins at 12 weeks.
Fig. 71:	2DUS image showing dichorionic diamniotic
	twins at 13 weeks.
Fig. 72:	2DUS image showing conjoined twins at 12
	weeks.
Fig. 73:	2DUS image showing fetal hydrops at 20 weks.
Fig. 74:	2DUS image showing fetal hydrops at 25 weeks.
Fig. 75:	2DUS &postpartum images of cloacal extrophy.
Fig. 76:	2DUS images of Meckel-Gruber syndrome.
Fig. 77:	3DUS transparent minimum rendering mode
	showing situs solitus & situs ambiguous.

List of Abbreviations

AC	Abdominal circumference.
AP	Antero-posterior.
APDK	Adult polycystic kidney disease.
ARA	Ano-rectal atresia.
AVI	Audio-vido interleave.
CDH	Congenital diaphragmatic hernia.
CNS	Central nervous system.
CVS	Cardio-vascular system.
2D	Two dimensions.
3D	Three dimensions.
4D	Four dimensions.
3DPD	Three dimensional power Doppler.
2 DUS	Two dimensional ultrasound.
3DUS	Three dimensional ultrasound.
4DUS	Four dimensional ultrasound.
GIT	Gastro-intestinal tract.
IPCK	Infantile polycystic kidney disease.
IUGR	Intra-uterine growth retardation.
MCDK	Multicystic dysplastic kidney disease.
MSAFP	Maternal serum Alpha feto-protein.
OEIS	Omphalocele, Exttrophy, Imperforate anus, Spinal
	defect.
PUJO	Pelvi-ureteric junction obstruction.
ROI	Region of interest.
RPD	Renal pelvic dilatation.
SD	Stander deviation.

SGA	Small for gestational age.
TRAP	Twin reversed arterial perfusion syndrome.
TVS	Trans-vaginal ultrasound.
UPJ	Uretro-pelvic junction.
UPR	Urine production rate.
US	Ultra-sound.
UVVF	Umbilical venous volume flow.
VACTERL	Vertebral segmentation, anorectal atresia,
	Tracheo-oesophageal fistulas, and Renal
	anomalies.
VOCAL	Virtual organ computer-aided analysis mode.

INTRODUCTION

For more than 40 years, ultrasound has been extensively used in medical imaging, which has proved helpful for the diagnosis and staging of many diseases (Goncalaves et al., 2005 & Kurjak & Chervenak, 2004).

Three-dimensional ultrasound (3DUS) was first introduced during the 1980s and has gained increasing acceptance in obstetrics as technological improvement accelerated (Yagel et al., 2009).

Three dimensional ultrasound has become an important part of prenatal diagnosis. 2D images provide a series of planer images that the operator must mentaly reconstruct to represent 3D anatomy. In cases with structural malformation, this may be doubly diffecult for even the most experienced examinar (Sciaky-Tamir et al., 2006).

The complete abdominal surface is invisble by conventional 2D technology, with the only means of abdominal surface survey involving serial tomographic sections in sagittal and trasverse planes. Using the 3D surface mode, we are able to visulaze the complete abdominal surface and umlilical cord insertion in a single image depicting their natural appearance (Benoit et al., 2000).

Post-processing offers the possibility of surface imaging of intra-abdominal structures. It is possible to construct any slice nearly parallel to the mothers abdominal wall, thus making it possible to observe the esophageal gastric junction, pylorus and any other pathology (Candiani, 1998).

1

Three-dimensional ultrasuond confirms a suspected multicystic dysplastic kideny as well as renal agenesis, and the pelviureteric junction and uretero-vesical junction are easily observable (Candiani, 1998).

Three-dimensional & four-dimensional ultrasonography provides accurate and quick detection of many fetal abnormalities (Merz et al., 1997 and 1998).

AIM OF WORK

The aim of work is to review the role of 3D and 4D ultrasound in diagnosis of fetal abdominal anomalies.

NORMAL ULTRASONIC DEVELOPMENT OF FETAL ABDOMEN

The gestation sac

The earliest ultrasonic confirmation of a normal intrauterine pregnancy is the demonstration of gestation sac within the uterus, thickening of the endometrium might be recognized prior to this cannot be taken as diagnostic sign of pregnancy (Lindsay et al., 1992 &Grisolia et al., 1993).

The gestation sac is usually visualized from 31 days or 4^{+3} weeks of gestation (fig.1) using the transvaginal method, when it measures 2-3 mm in diameter. It can de identified about a week later using the abdominal route (Lindsay et al., 1992 &Grisolia et al., 1993).

(Fig. 1) A normal intrauterine pregnancy at 4 weeks' gestation imaged using the trans-vaginal method. The gestational sac measures 3 mm. The yolk sac and embryo are not visible at this early stage. Note the echogenic appearance and the thickness of the wall of the sac (Quoted from Chudleigh and Thilaganathan, 2005).