

FACULTY OF EDUCATION BIOLOGICAL & GEOLOGICAL SCIENCES DEPARTMENT

HABITATS AND PLANT SPECIES DIVERSITY IN QALYUBIA GOVERNORATE, EGYPT

CRARKRARKARKARKARKA

A THESIS SUBMITTED IN PARTIAL FULFILMENT FOR THE DEGREE OF MASTER IN PREPARATION OF SCIENCE'S TEACHER (BOTANY)

BY

ETHAR ASAAD SAYED AHMED HUSSEIN

B.Sc. & Ed. (2005)

General Diploma in Preparation of Science's Teacher (Botany-2006) Special Diploma in Preparation of Science's Teacher (Botany-2007)

SUPERVISED BY

Dr. Monier M. Abd El-Ghani

Professor of Flora & Ecology Faculty of Science Cairo University Dr. Maged M. Abou-El-Enain

Professor of Taxonomy & Flora Faculty of Education Ain Shams University

Dr. Abd-El-Moneim I. Aboel-Atta

Assistant Professor of Taxonomy & Flora Faculty of Education Ain Shams University

2011

FACULTY OF EDUCATION BIOLOGICAL & GEOLOGICAL SCIENCES DEPARTMENT

Approval Sheet

Student Name: Ethar Asaad Sayed Ahmed Hussein

Title: Habitats and Plant Species Diversity in Qalyubia Governorate, Egypt

Degree: M. Sc.

Supervisors	Appro	oved
Prof. Dr. Monier M. Abd El-Ghani	()
Prof. Dr. Maged Mahmoud Abou-El-Enain	()
Dr. Abd-El-Moneim Ibrahim Aboel-Atta	()

DECLARATION

This thesis has not been previously submitted for any degree at this or any other University.

Ethar Asaad Sayed

To my parents

Acknowledgment

The author wishes to express her deep thanks and gratitude to *Dr. Monier M. Abd El-Ghani*, Professor of Flora & Ecology, Faculty of Science, Cairo University for suggesting the problem, keen supervision, guidance throughout this work and revision of the manuscript.

Sincere gratitude is due to *Dr. Maged M. Abou-El-Enain*, Professor of Plant Taxonomy & Flora, Faculty of Education, Ain Shams University for his keen supervision, help and advice during the work and for his assistance in preparation of the manuscript.

Deep thanks are also due to *Dr. Abd-El-Moneim I. Aboel-Atta*, Assistant professor of Plant Taxonomy, Biological and Geological Sciences Department, Faculty of Education, Ain Shams University for his supervision, generous help and advice during the study.

The author is also greatly indebted to each of *Prof. Dr. M. A. Shahein* and *Prof. Dr. L. M. Zaki* Ex-heads of Biological and Geological Sciences Department, Faculty of Education, Ain Shams University for their cooperation in the practical part and encouragement throughout the work; and the present Head *Prof. Dr. N. Z. Al-Alfy* for providing facilities.

Thanks are also due to all staff members of Biological and Geological Sciences Department, Faculty of Education, Ain Shams University whose provide sincere help especially *Dr*. *Radwan A. Abu El-Nasr* and *Dr. Nabawy A. I. Elkattan* for their kind assistance in the practical work and *Mr. Abd-El-Moneim Gomaa* for his assistance in carrying out the field work.

The author

Abstract

In this study, the floristic composition of southern Nile Delta region in Oalyubia governorate of Egypt was analyzed in terms of habitat variations and species diversity. A total of 160 stands were surveyed in six centers including 42 sites. Four main habitats were recognized: Wet lands, cultivated lands, wastelands and sand plains. Nineteen environmental factors were recognized: coarse sand, fine sand, silt, clay, CaCO₃, organic matter, saturation percentage, pH, electric conductivity (EC), chlorides (Cl⁻), bicarbonates (HCO₃⁻), sulphates (SO_4^{-2}) , sodium (Na^+) , potassium (K^+) , calcium (Ca^{++}) , magnesium (Mg⁺⁺) and macronutrients (N, P, K). Basic statistical treatments were established by using the computer program SPSS v. 10.0. The produced data were subjected to a cluster analysis by using the program MVSP v. 3.1 and ordination analyses i.e. Detrended Correspondence Analysis (DCA) and Canonical Correspondence Analysis (CCA) by using CANOCO v. 4.5. The total recorded plants were 164 species, belonging to 133 genera and 48 families, in percentages of 7.7%, 17.9% and 39.6% of the total numbers of species, genera and families of the Egyptian flora, respectively. 56.7% of the recorded species were belonging to eight families that include the main bulk of the alien plants of the agro-ecosystem either in Egypt or in adjacent countries. A complete checklist of the recorded species was arranged and their life-form spectra were identified. A comparison of species richness and distribution of the different populations in the studied habitats was discussed. The floristic similarity between the recognized habitats showed a significant positive correlation between the canal banks and cultivated lands. Cynanchum acutum subsp. acutum, Cynodon dactylon, Phragmites australis and Pluchea dioscoridis were of high ecological amplitude. The main vegetation groups in each of the four studied habitats were determined and their controlling ecological factors were identified.

Key Words:

Qalyubia; Life forms; Plant diversity; DCA; CCA; Shannon's index.

Contents

	Page
Approvals and Acknowledgment	i-iv
Abstract	V
Contents	vi-vii
List of Figures	viii-x
List of Tables	xi-xiii
Part I:	
- Introduction and Aim of the Work	1
- Literature Review	3
- Study Area	12
Geographical location	12
Climate	12
Topographic characteristic	15
Geomorphologic characteristics	15
Geological characteristics	17
Surface water	18
Hydrological characteristics	19
Hydrochemical characteristics	20
Geotechnical characteristics	21
Part II: Methods	22
Field Work	22
Floristic Composition	22
Vegetation Analysis	26
Habitat Types	26
Soil Analysis	27
1. Physical analysis	28
1.1. Saturation percentage	28
1.2. Mechanical analysis of soil	28
2. Chemical analysis	29
2.1. Hydrogen ion concentrations (pH value)	29
2.2. Electrical conductivity (EC)	29
2.3. Determination of soluble anions	29
2.4. Determination of soluble cations	31
2.5. Determination of organic matter	32

2.6. Determination of total insoluble carbonate	33
2.7. Available nitrogen in the soils	33
2.8. Available phosphorus in soils	34
2.9. Available potassium in soils	34
Data Analysis	34
1. Multivariate Analysis	34
1.1. Classification of stands	34
1.2. Ordination of sites	35
1.2.1. Indirect gradient analysis	35
1.2.2. Direct (constrained) gradient analysis	36
2. Statistical analysis	38
Part III: Results	39
i) Enumeration of species	39
Floristic diversity of Qalyubia	47
ii) Plant species distribution and soil	51
characteristics in the studied centers:	54
1- Kafr Shoker center	54
2- Benha center	63
3- Tokh center	72
4- Qalyub center	82
5- Shebin El-Kanater center	92
6- El-Khanka center	102
iii) Habitat heterogeneity and soil-vegetation	114
relations in Qalyubia	114
1- The canal banks	115
2- The cultivated lands	130
<i>3- The waste lands</i>	154
4- The sand plains	167
Interrelations between habitats	180
Part IV: Discussion	188
Summary and Conclusion	205
References	212
Arabic summary	
Appendices	A1

List of Figures

Title	Page
Fig. 1: Location map of the Nile Delta region showing the study area.	13
Fig. 2: Map of the Qalyubia governorate showing their centers.	14
Fig. 3: Species-rich families in Qalyubia Governorate.	47
Fig. 4: Life span spectrum of the vascular flora of the study area.	48
Fig. 5: Life form spectrum of the vascular flora of the study area.	49
Fig. 6: Cluster analysis of the 20 stands located in Kafr Shoker	61
center , showing the three separated vegetation groups (A-C).	
Fig. 7: Detrended Correspondence Analysis (DCA) ordination	61
plot of the 20 stands of Kafr Shoker center represent the	
three cluster groups (A-C) superimposed.	
Fig. 8: Cluster analysis of the 20 stands located in Benha center	70
showing the four separated vegetation groups (A-D).	
Fig. 9: Detrended Correspondence Analysis (DCA) ordination	70
plot of the 20 stands of Benha center represent the four	
cluster groups (A-D) superimposed.	
Fig. 10: Cluster analysis of the 20 stands located in Tokh center	80
showing the three separated vegetation groups (A-C).	0.0
Fig. 11: DCA ordination plot of the 20 stands of Tokh center	80
represent the three cluster groups (A-C) superimposed.	00
Fig. 12: Cluster analysis of the 20 stands located in Qalyub	90
Center showing the four separated vegetation groups (A-D).	
Fig. 13: Detrended Correspondence Analysis (DCA) ordination	90
plot of the 20 stands of Qalyub center represent the four	
cluster groups (A-D) superimposed.	
Fig. 14: Cluster analysis of the 30 stands located in Shebin El-	100
Kanater center, showing the three separated vegetation	
groups (A-C).	
Fig. 15: Detrended Correspondence Analysis (DCA) ordination	100
plot of the 30 stands of Shebin El-Kanater center	
represent the three cluster groups (A-C) superimposed.	
Fig. 16: Cluster analysis of the 50 stands located in El-Khanka	111
center, showing the four separated vegetation groups (A-	
	111
Fig. 17: Detrended Correspondence Analysis (DCA) ordination	111
plot of the 50 stands of El-Khanka center represent the	
tour cluster groups (A-D) superimposed.	

Title	Page
Fig. 18: Cluster analysis of the 30 stands representing canal	122
bank habitat , showing the three separated vegetation	
groups (A-C).	
Fig. 19: The Detrended Correspondence Analysis (DCA)	122
ordination plot of the 30 stands of canal bank habitat	
represent the three cluster groups (A-C) superimposed.	
Fig. 20: Canonical Correspondence Analysis (CCA) biplot of	128
axes 1 and 2 showing the distribution of the 30 stands of	
canal bank habitat, together with their vegetation	
groups and soil variables.	
Fig. 21: Cluster analysis of the 90 stands representing cultivated	137
land habitat, showing the three separated vegetation	
groups (A-C).	
Fig. 22: The Detrended Correspondence Analysis (DCA)	138
ordination plot of the 90 stands of cultivated land	
habitat represent the three cluster groups (A-C)	
superimposed.	
Fig. 23: Canonical Correspondence Analysis (CCA) biplot of	144
axes 1 and 2 showing the distribution of the 90 stands of	
cultivated land habitat, together with their vegetation	
groups and soil variables.	
Fig. 24: A histogram represents the weed species distribution	153
among the various crops in the study area, showing the	
three weed categories: winter, summer and all-the-year in	
each crop. WW= winter weeds, SW= summer weeds and	
AW = all-the-year weeds.	
Fig. 25: Cluster analysis of the 20 stands representing waste land	159
habitat, showing the three separated vegetation groups	
(A-C).	
Fig. 26: The Detrended Correspondence Analysis (DCA)	159
ordination plot of the 20 stands of waste land habitat	
represent the three cluster groups (A-C) superimposed.	
Fig. 27: Canonical Correspondence Analysis (CCA) biplot of	165
axes 1 and 2 showing the distribution of the 20 stands of	
waste land habitat, together with their vegetation groups	
and soil variables.	
Fig. 28: Cluster analysis of the 20 stands representing sand	172
plains habitat, showing the three separated vegetation	
groups (A-C).	
Fig. 29: The Detrended Correspondence Analysis (DCA)	172
ordination plot of the 20 stands of sand plains habitat	
represent the three cluster groups (A-C) superimposed.	

LIST OF FIGURES

Title	Page
Fig. 30: Canonical Correspondence Analysis (CCA) biplot of	178
axes 1 and 2 showing the distribution of the 20 stands of	
sand plains habitat, together with their vegetation	
groups and soil variables.	
Fig. 31: Number of species recorded in Qalyubia Governorate in	182
relation to the habitats in which they occur.	
Fig. 32: Regression line of the relation between the numbers of	182
species in relation to the habitats in which they occur.	
Appendix 2: Photos of some representative plants of the different	A20
habitats in the study area.	

List of Tables

Title	Page
Table 1: Seasonal fluctuations in climatic factors at Qalyubia governorate during the period from 1999 to 2009 (CMD, 2009).	16
Table 2. List of the locations in the study area over the periodfrom summer 2008 to winter 2010.	23
Table 3. Habitat types identified in the study area.	27
Table 4: Floristic composition of the vascular plants in the study area locations.	49
Table 5: Synoptic table of the indicator and preferential speciesof the three vegetation groups (A - C) with their presencevalues (%) in Kafr Shoker center.	59
Table 6: Mean values, standard deviations (± SD) and ANOVAF-values of the soil variables, species richness (SR) andShannon's index (H') in the stands representing the threevegetation groups obtained by cluster analysis in KafrShoker center.	62
Table 7: Synoptic table of the indicator and preferential species of the four vegetation groups (A - D) with their presence values (%) in Benha center .	68
Table 8: Mean values, standard deviations (± SD) and ANOVAF-values of the soil variables, species richness (SR) andShannon's index (H') in the stands representing the fourvegetation groups obtained by cluster analysis in Benhacenter.	71
Table 9: Synoptic table of the indicator and preferential species of the three vegetation groups (A - C) with their presence values (%) in Tokh center . Shading cells indicate the species confined to each group.	77
Table 10: Mean values, standard deviations (± SD) and ANOVAF-values of the soil variables, species richness (SR) andShannon's index (H') in the stands representing the threevegetation groups obtained by cluster analysis in Tokhcenter.	81
Table 11: Synoptic table of the indicator and preferential speciesof the four vegetation groups (A - D) with their presencevalues (%) in Qalyub center .	87
Table 12: Mean values, standard deviations (± SD) and ANOVAF-values of the soil variables, species richness (SR) andShannon's index (H') in the stands representing the fourvegetation groups obtained by cluster analysis in Qalyubcenter.	91

Title	Page
Table 13: Synoptic table of the indicator and preferential species	97
of the three vegetation groups (A - C) with their presence	
values (%) in Shebin El-Kanater center.	
Table 14: Mean values, standard deviations $(\pm SD)$ and ANOVA	101
F-values of the soil variables, species richness (SR) and	
Shannon's index (H') in the stands representing the 3	
vegetation groups obtained by cluster analysis in Shebin	
El-Kanater center.	10-
Table 15: Synoptic table of the indicator and preferential species	107
of the four vegetation groups (A - D) with their presence	
values (%) in El-Khanka center . Shading cells indicate	
the species confined to each group.	110
Table 16: Mean values, standard deviations $(\pm SD)$ and ANOVA	112
F-values of the soll variables, species fictness (SR) and Shannan's index (III) in the stands representing the 2	
Shannon's index (H) in the stands representing the 5	
Vegetation groups obtained by cluster analysis in EI-	
Table 17: Synoptic table of the indicator and preferential species	110
of the three vegetation groups $(A - C)$ with their presence	119
values (%) in canal bank habitat	
Table 18: Mean values standard deviations $(+ SD)$ and ANOVA	124
F-values of the soil variables species richness (SR) and	127
Shannon's index (H') in the stands representing the three	
vegetation groups obtained by cluster analysis of canal	
bank habitat.	
Table 19: Summary of Pearson's correlations between soil	125
variables, species richness (SR) and Shannon's index	
(H') in canal bank habitat.	
Table 20: The results of ordination for the four CCA axes, Inter-	129
set correlation of the soil variables, together with	
Eigenvalues and species-environment correlation in	
canal bank habitat.	
Table 21: Synoptic table of the indicator and preferential species	134
of the three vegetation groups (A - C) with their presence	
values (%) in cultivated land habitat.	
Table 22: Mean values, standard deviations $(\pm SD)$ and ANOVA	140
F-values of the soil variables, species richness (SR) and	
Shannon's index (H') in the stands representing the three	
vegetation groups obtained by cluster analysis of	
cultivated land habitat.	
Table 23: Summary of Pearson's correlations between soil	141
variables, species richness (SR) and Shannon's index	
(H ²) in cultivated land habitat.	

Title	Page
Table 24: The results of ordination for the four CCA axes, Inter-	145
set correlation of the soil variables, together with	
Eigenvalues and species-environment correlation in	
cultivated land habitat.	
Table 25: Records of weed species associated with the various	149
crops in the study area.	
Table 26: Synoptic table of the indicator and preferential species	158
of the three vegetation groups (A - C) with their presence	
values (%) in waste land habitat.	
Table 27: Mean values, standard deviations (\pm SD) and ANOVA	161
F-values of the soil variables, species richness (SR) and	
Shannon's index (H) in the stands representing the three	
land habitat	
Table 28: Summery of Dearson's correlations between soil	162
variables species richness (SP) and Shannon's index	102
(H') in weste land habitat	
Table 29. The results of ordination for the four CCA axes. Inter-	166
set correlation of the soil variables together with	100
Eigenvalues and species-environment correlation in	
waste land habitat.	
Table 30: Synoptic table of the indicator and preferential species	171
of the three vegetation groups (A - C) with their presence	
values (%) in sand plains habitat.	
Table 31: Mean values, standard deviations $(\pm SD)$ and ANOVA	174
F-values of the soil variables, species richness (SR) and	
Shannon's index (H') in the stands representing the three	
vegetation groups obtained by cluster analysis of sand	
plains habitat.	
Table 32: Summary of Pearson's correlations between soil	175
variables, species richness (SR) and Shannon's index	
(H') in sand plains habitat.	
Table 33: The results of ordination for the four CCA axes, Inter–	179
set correlation of the soil variables, together with	
Eigenvalues and species–environment correlation in sand	
plains habitat.	101
Table 34: The floristic similarity between the different habitats in	181
une study area. $CB = canal banks, CL = cultivated lands,$ WI = wests lands and SB = cand rlains	
$w_L - waste tailus allu SP = sallu piallis.$	102
four habitate recognized in the study area with their	103
presence values (%)	
Annendiv 1. The recognized centers stands and species records	Λ1
of the present study 1- present 0- abcent. T- total	AI
scores: $P \%$ = the presence estimates for each species	
solice, i /o- the presence estimates for each species.	