Machine Learning in e-Learning Environments

A Thesis
Submitted in Partial Fulfillment of the Requirements of the
Degree of Doctor of Philosophy in Electrical Engineering
Computer and Systems Engineering Department

Submitted by

Sally Sameh Abd El Ghaffar Attia

M. Sc., Electrical Engineering
(Computer and Systems Engineering)
Ain Shams University, 2004

Supervised by

Prof. Dr. Hani M. K. Mahdi
Prof. Dr. Hoda K. Mohamed

Cairo, Egypt
March, 2011
Examiners Committee

Name : Sally Sameh Abd El Ghaffar Attia
Thesis : Machine Learning in e-Learning Environments
Degree : Doctor of Philosophy in Electrical Engineering

<table>
<thead>
<tr>
<th>Name, Title, and Affiliation</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Prof. Dr. Hani Hagras</td>
<td></td>
</tr>
<tr>
<td>Director of the Computational Intelligence Centre</td>
<td></td>
</tr>
<tr>
<td>Head of the Fuzzy Systems Group</td>
<td></td>
</tr>
<tr>
<td>School of Computer Science and Electronic Engineering</td>
<td></td>
</tr>
<tr>
<td>University of Essex, United Kingdom</td>
<td></td>
</tr>
<tr>
<td>2. Prof. Dr. Abdel-Moneim A. Wahdan</td>
<td></td>
</tr>
<tr>
<td>Computer and Systems Engineering Department</td>
<td></td>
</tr>
<tr>
<td>Faculty of Engineering,</td>
<td></td>
</tr>
<tr>
<td>Ain Shams University, Cairo, Egypt</td>
<td></td>
</tr>
<tr>
<td>3. Prof. Dr. Hani. M. Kamal Mahdi</td>
<td></td>
</tr>
<tr>
<td>Computer and Systems Engineering Department</td>
<td></td>
</tr>
<tr>
<td>Faculty of Engineering,</td>
<td></td>
</tr>
<tr>
<td>Ain Shams University, Cairo, Egypt (Supervisor)</td>
<td></td>
</tr>
<tr>
<td>4. Prof. Dr. Hoda Korashi Mohamed</td>
<td></td>
</tr>
<tr>
<td>Computer and Systems Engineering Department</td>
<td></td>
</tr>
<tr>
<td>Faculty of Engineering,</td>
<td></td>
</tr>
<tr>
<td>Ain Shams University, Cairo, Egypt (Supervisor)</td>
<td></td>
</tr>
</tbody>
</table>

Date: 24 / 3 / 2011
Abstract

Sally Sameh Abdel Ghaffar Attia

Machine Learning in e-Learning Environments

Doctor of Philosophy dissertation

Ain Shams University, 2011

E-learning environments have evolved over the past decades due to the availability of high speed networking and Internet. E-learning has become a popular teaching method in recent years. One of the modes of e-learning is the blended learning where learners can view teaching materials asynchronously from a teaching website and collaborate with their peers at their own pace, while providing for necessary face-to-face explanation, discussion, and physical operation in the classroom. The learners consequently require support while using web based tools, but it is very difficult and time consuming for instructors to track and assess all the activities performed by all learners on the e-learning tools.

At the same time, the intelligent agent paradigm is growing to be a continuously evolving and expanding area. It is a perfect technology to be used in the web-based learning field since it fits the dynamic and distributed nature of e-learning where all of the teachers and students are independent entities, and they need to collaborate with each other to help the teachers teach better and students learn better.

Thus the main objective of this research is the development of a Multi-Agent System for Collaborative E-learning (MASCE) as a “proof of concept” which will use machine learning techniques for data mining of the huge amount of data collected for the reasoning of agents.
Three different machine learning techniques are being used for data mining of data collected to find best candidate helpers. These are Rough sets, Decision trees and finally an integrated approach using rough sets and entropy. The results obtained were in the form of decision rules which were used by the multi-agent system to recommend best potential helpers for a student who needs help in a particular topic. The results are compared to find which one is the most suitable for this particular application as it is known that there is no one universal machine learning solution for all the domains of applications. It was found that the integrated rough sets and entropy approach gave simpler, shorter rules with higher coverage and better accuracy at the same time.

In conclusion, supported by machine learning techniques, the researcher was able to enhance the application of multi-agent system to collect, manage, share, and analyze data and extract useful information in a real-time, dynamic collaborative e-learning environment. The results show that this is quite a promising approach that successfully combines machine learning techniques with agent technology in e-learning systems in order to provide higher quality services towards the end users of e-learning systems (both students and instructors).

Keywords:

E-learning, Collaborative Learning, Multi-Agent Systems, Machine Learning, Data Mining, Rough Sets, Decision Trees
Acknowledgements

I owe a special acknowledgment to Prof. Dr. Hani Mahdi for giving me a lot of his time during the years of preparing this thesis. I could never had done it without his support, technical advice and suggestions, thorough reading of all my work.

I am deeply grateful to Prof. Dr. Hoda Korashi for supporting me during the research and giving me her valuable comments and advice and helping me to finish the thesis in time.

I will never be able to thank my parents enough for supporting me during all my life. They were the only reason that gave me hope to finish this work. I tried to accomplish it to make them proud of me. I would like to dedicate this work to them and to my sister also.

I am very grateful to my husband for helping me whenever I needed his help and for bearing that I was always busy during the last period. Finally, this work is dedicated to my lovely two kids, Youssef and Nour, who used to pray for Allah that I finish my thesis. I want to compensate them all for being busy and nervous especially during the last period.
Statement

This dissertation is submitted to Ain Shams University for the degree of Doctor of Philosophy in Computer and Systems Engineering Department.

The work included in this thesis was carried out by the author at Computer and Systems Engineering Department, Ain Shams University.

No part of this thesis has been submitted for a degree or qualification at other university or institution.

Date : 24/3/2011
Signature :
Name : Sally Sameh Abd El Ghaffar Attia
Table of Contents

Chapter One: Introduction
1.1 Research Motivation
1.2 Research Objective
1.3 Thesis outline

Chapter Two: Machine Learning
2.1 Definition of Machine Learning
2.2 Machine Learning Categories
2.2.1 Supervised Learning
2.2.2 Unsupervised Learning
2.2.3 Reinforcement Learning
2.3 Learning Tasks
2.3.1 Classification
2.3.2 Clustering
2.3.3 Association
2.3.4 Regression, Interpolation, and Density Estimation
2.4 Machine Learning and Data Mining
2.5 Fields of Applications
2.6 Review on some Learning Algorithms
2.6.1 Decision Trees
2.6.2 Neural Networks
2.6.3 Bayesian Networks
2.6.4 Genetic Algorithms
Chapter Three: E-Learning

3.1 Distance Education vs. Traditional Education
3.2 Different Terminologies
3.3 History of E-Learning
3.4 E-Learning Components
3.5 Transmission Modes
3.6 Technologies for Delivering E-Learning
3.7 Different Views on E-Learning
3.8 Spread of Distance Education
3.9 Current State of Art
3.10 Semantic Web and E-Learning
3.11 E-Learning 2.0
3.12 Challenges to E-learning

Chapter Four: Agent Technology

4.1 Definition of Agent
4.2 Properties of Agents
4.3 Multi-Agent System
4.4 Agent Design (Micro Perspective)
 4.4.1 Rational Agents
 4.4.2 PEAS
4.5 Agent Types
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.1</td>
<td>Simple Reflex Agents</td>
<td>76</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Model-Based Reflex Agents</td>
<td>76</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Goal-Based Agents</td>
<td>77</td>
</tr>
<tr>
<td>4.5.4</td>
<td>Utility-Based Agents</td>
<td>78</td>
</tr>
<tr>
<td>4.5.5</td>
<td>Learning Agents</td>
<td>79</td>
</tr>
<tr>
<td>4.6</td>
<td>Synthesizing Agents</td>
<td>79</td>
</tr>
<tr>
<td>4.7</td>
<td>Society Design (Macro Perspective)</td>
<td>81</td>
</tr>
<tr>
<td>4.7.1</td>
<td>Mechanism Design</td>
<td>81</td>
</tr>
<tr>
<td>4.7.2</td>
<td>Auctions</td>
<td>82</td>
</tr>
<tr>
<td>4.7.3</td>
<td>Negotiation</td>
<td>84</td>
</tr>
<tr>
<td>4.7.4</td>
<td>Argumentation</td>
<td>85</td>
</tr>
<tr>
<td>4.8</td>
<td>Agent Communication</td>
<td>86</td>
</tr>
<tr>
<td>4.8.1</td>
<td>Speech Acts</td>
<td>86</td>
</tr>
<tr>
<td>4.8.2</td>
<td>Agent Communication Languages</td>
<td>87</td>
</tr>
<tr>
<td>4.9</td>
<td>Cooperation</td>
<td>88</td>
</tr>
<tr>
<td>4.9.1</td>
<td>Types of Agents with respect to Cooperation</td>
<td>88</td>
</tr>
<tr>
<td>4.9.2</td>
<td>Coherence and Coordination</td>
<td>89</td>
</tr>
<tr>
<td>4.9.3</td>
<td>Handling Inconsistency</td>
<td>91</td>
</tr>
<tr>
<td>4.10</td>
<td>Mobile Agents</td>
<td>92</td>
</tr>
<tr>
<td>4.11</td>
<td>Agent-Oriented Analysis and Design Methodologies</td>
<td>93</td>
</tr>
<tr>
<td>4.12</td>
<td>Agent Organizations</td>
<td>95</td>
</tr>
<tr>
<td>4.12.1</td>
<td>Hierarchical Organization</td>
<td>95</td>
</tr>
<tr>
<td>4.12.2</td>
<td>Flat Organization</td>
<td>96</td>
</tr>
<tr>
<td>4.12.3</td>
<td>Subsumption Organization</td>
<td>96</td>
</tr>
</tbody>
</table>
4.12.4 Modular Organization 97
4.13 Agent Platforms 98
4.14 When is an Agent-Based Solution Appropriate? 98
4.15 Applications of Multi-Agent Systems 99
4.16 FIPA Standards and Models 100
 4.16.1 FIPA Agent Reference Model 100
 4.16.2 Communication Architectures 101
4.17 Agent Life Cycle according to FIPA 103
4.18 Multi-Agents Systems in E-Learning 104
 4.18.1 Previous Work 104
 4.18.2 Design Issues of Agents in Education 107
 4.18.3 Challenges for MAS in E-learning 111
4.19 Multi-Agent Systems and Machine Learning 112
 4.19.1 Machine Learning Categories in Multi-Agent Systems 113
 4.19.2 Combining Learning with Recall in MAS 114
 4.19.3 Types of Multi-Agent Learning 115
 4.19.4 Previous Work 116

Chapter Five: Proposed Architecture for MASCE 118
5.1 Need for MASCE 118
5.2 MASCE System Requirements 119
5.3 Approaches for Building MASCE 120
5.4 System Analysis 123
 5.4.1 Brief External Use Case (Step 1) 123
 5.4.2 Detailed External Use Cases (Step 2) 129
5.4.3 Structuring Goals (Step 3) 129
5.5 System Design 133
 5.5.1 Internal Use Cases (Step 4) 135
 5.5.2 Sequence Diagram (Step 5) 137
 5.5.3 Agent Belief List (Step 6) 138
 5.5.4 BDI Agent Cards (Step 7) 143
5.6 Student Agency 144
5.7 Instructor Agency 145
5.8 Assistant Agency 146
5.9 Feasible Organizations for MASCE 147
5.10 Parameters for Tracking Behavior 150

Chapter Six: DM Techniques used within MASCE 153
 6.1 Three Levels for Knowledge Diffusio in MAS 154
 6.2 Rough Sets Mining in MASCE 155
 6.3 Decision Trees Mining in MASCE 162
 6.4 Integrated RS and Entropy (RSE) Mining in MASCE 163
 6.5 Evaluating Machine Learning Techniques 166
 6.5.1 Repeated Cross-Validation 167
 6.5.2 Leave-One-Out 169
 6.5.3 Bootstrapping 169
 6.5.4 Cost of Evaluation 170
 6.5.5 Confusion Matrix 170
 6.6 Comparing Different Learning Algorithms 172
 6.7 Comparison between Rough Sets and Fuzzy Logic 174
Chapter Seven: Implementation

7.1 Database

7.2 Agent Structure Implementation

7.2.1 Hierarchy of Packages

7.2.2 The Agent class

7.2.3 Student Agent Class

7.2.4 Manager Student Agent Class

7.2.5 Instructor Agent Class

7.2.6 Manager Instructor Agent Class

7.2.7 Assistant Agent Class

7.2.8 Manager Assistant Agent Class

7.3 Agent Behaviors

7.4 Agent Communication

7.5 Ontology

7.6 Administrator Module

7.7 Quizzes Implementation

7.8 Email Service

7.9 Teaching Materials Service

7.10 Machine Learning Module

7.10.1 Expert Opinion

7.10.2 Student’s Tracking System

7.10.3 Finding Best Helpers

7.10.4 Help Sessions
7.10.5 Peer Evaluation 206
7.10.6 Rough Sets Algorithm Implementation 208
7.10.7 Decision Tree Algorithm Implementation 209
7.10.8 Integrated RS and Entropy Algorithm Implementation 209
7.10.9 Evaluating Performance 210
7.11 MASCE Users’ Guides 211
 7.11.1 Administrator User’s Guide 212
 7.11.2 Instructor User’s Guide 213
 7.11.3 Student’s User Guide 216
 7.11.4 Assistant User’s Guide 220

Chapter Eight: Results 222
 8.1 Results of Rough Sets Classifier 223
 8.2 Results of Decision Trees Classifier 225
 8.3 Results of Integrated Rough Sets and Entropy Classifier 225
 8.4 Evaluating Extracted Rules 227
 8.4.1 Confusion Matrix using Rough Sets Classifier 228
 8.4.2 Confusion Matrix using Decision Trees Classifier 228
 8.4.3 Confusion Matrix using Integrated Rough Sets and Entropy Classifier 228
 8.4.4 Comparison of Performance Measures for Three Classifiers 229

Chapter Nine: Conclusions and Future Work 231

Appendix A 235

Publications 245

References 247
List of Tables

Table 2.1 The Weather Data [9] ... 20
Table 3.1 The five models of e-learning [38] .. 59
Table 5.1 External Brief Use Case [108] .. 125
Table 5.2 External Brief Use Case Divided into Sub Goals [108] 127
Table 5.3 Help Student Collaborate Detailed External Use Case [108] .. 130
Table 5.4 Help Student Collaborate Internal Use Case [108] 135
Table 6.1 Confusion Matrix Parameters ... 157
Table 6.2 Different Performance Measures 171
Table 8.1 Snapshot of MASCE decision table filled with random data 224
Table 8.2 Extracted Decision Rules from Rough Set Classifier 225
Table 8.3 Extracted Decision Rules from Decision Tree Classifier 226
Table 8.4 Extracted Decision Rules from Integrated RSE approach 227
Table 8.5 Confusion Matrix using Rough Sets Classifier 228
Table 8.6 Confusion Matrix using Decision Trees Classifier 228
Table 8.7 Confusion Matrix using Integrated Approach 228
Table 8.8 Comparison of Performance Measures for three classifiers... 229
List of Figures and Illustrations

Figure 2.1 Supervised Learning [11]...9
Figure 2.2 Basic Classification Problem ...11
Figure 2.3 Various Shapes of Clusters in 2-D Space [12].................................13
Figure 2.4 Tree Stumps for the Weather Data [9]..21
Figure 2.5 Expanded Tree Stumps for Weather Data [9].................................24
Figure 2.6 Decision Tree for the Weather Data [9]..25
Figure 2.7 Scheme of the preceptron [12]...31
Figure 2.8 Flow chart of neural networks algorithm [12]...............................32
Figure 2.9 Simple Bayesian Network for Weather data [9]............................33
Figure 2.10 A Pictorial Representation of a Rough Set [15].........................40
Figure 2.11 Process Map and the Main Steps of RS Analysis [15].................42
Figure 3.1 Traditional Education [36]...51
Figure 3.2 Distance Education [36]...52
Figure 3.3 The three components of e-learning [38]....................................55
Figure 3.4 Learner to Learner Connections [36]...66
Figure 3.5 Each Student can act as a teacher [36]...67
Figure 3.6 Learning Technology Systems Architecture (LTSA) by IEEE 1484 [43] ..71
Figure 4.1 An Agent in its environment [46]..73
Figure 4.2 Related research areas to Agent Technology...............................74