Expression of Sirtuin 1 and its relation to Tumor Necrosis Factor-Alpha in psoriatic plaques.

Thesis submitted for partial fulfillment of Masters Degree in Dermatology

By

Aya Magdi Ibrahim AlOrbani, M.B.B.ch

Supervised by

Professor Hoda Mohamed Hussein Rasheed, MD

Professor of Dermatology Faculty of Medicine – Cairo University

Professor Mohamed Hussein Medhat El-Komy, MD

Professor of Dermatology Faculty of Medicine – Cairo University

Professor Olfat Gamil Shaker, MD

Professor of Medical Biochemistry and Molecular Biology Faculty of Medicine – Cairo University

> Faculty of Medicine Cairo University 2014

Acknowledgements

First and foremost, I thank **God**, the Most Gracious, the Most Merciful for granting me the power to proceed and accomplish this work.

I owe my deepest gratitude to **Prof. Dr. Hoda Rasheed,** for giving me the honor of working under her supervision and providing me with an example of what a doctor, leader and teacher should be like. This work would not have been possible without her guidance and encouragement.

I would like to acknowledge my profound gratitude to **Prof. Dr. Mohamed El Komy** for his invaluable assistance, support and guidance throughout this work. I am deeply indebted to him.

My sincere thanks to **Prof. Dr. Olfat Shaker** for her great effort, cooperation and support.

I am very grateful to Dr Rehab Hegazy for her cooperation and valuable advice.

Finally, I would like to dedicate this work to **my family, especially my parents and dear husband** for their great care, support and encouragement along this work and throughout my life.

CONTENTS

		Page
•	Abstract	I
•	List of Abbreviations	III
•	List of Figures	VIII
•	List of Tables	Х
•	Introduction and Aim of Work	1
•	Review of Literature	
	Chapter 1: Immunopathogenesis of psoriasis	4
	Chapter 2: Tumor Necrosis Factor-alpha	26
	Chapter 3: Sirtuins	40
•	Patients and Methods	62
•	Results	73
•	Discussion	87
•	Summary and Recommendations	100
•	References	103
•	Appendix	
•	Arabic Summary	

Abstract

Background: Although it is now considered a prototypic Th1/Th17-mediated disease, several gaps still exist in our understanding of the pathogenesis of psoriasis. Sirtuins, a family of seven proteins that have generated huge interest in several fields including dermatology, have been proposed to contribute to the development of inflammatory and hyperproliferative disease. It has been proposed that changes in Sirtuin 1 (SIRT1), through its effect on pro-inflammatory cytokines such as Tumor Necrosis Factor-alpha (TNF- α), may contribute to the development of the psoriatic plaque.

Objective: Our aim was to study the degree of expression of Sirtuin 1 (SIRT1) and its relation to clinical disease parameters as well as its interactions with Tumor Necrosis Factor-alpha (TNF- α) in psoriatic skin.

Methods: 30 psoriatic patients and 22 age, sex and skin type matched controls were included. Full clinical examination was done and tissue levels of SIRT1 and TNF- α were measured by ELISA.

Results: SIRT1 was significantly downregulated in lesional psoriatic skin in comparison to controls and non-lesional skin (p<0.001). TNF- α was significantly upregulated in lesional psoriatic skin in comparison to controls and non-lesional skin (p<0.001). A significant negative correlation between non-lesional TNF- α and disease duration (r=-0.483, p=0.007), as well as a positive correlation between TNF- α and SIRT1 in non-lesional psoriatic skin (r=0.451, p=0.021) were detected.

Limitations: Small sample size

I

Conclusion: Our study concludes that the downregulation of SIRT1 in psoriatic plaques may be involved in the pathogenesis of psoriasis. This occurs through several mechanisms, including a possible unchecked pro-inflammatory TNF- α consequence.

Keywords: Psoriasis - Sirtuins - Tumor Necrosis Factor-alpha - Epigenetics - NF-кВ

List of Abbreviations

ADP: Adenosine diphosphate

ADPRT: Adenosine diphosphate ribosyl transferase

AIF: Apoptosis-inducing factor

AMPs: Antimicrobial peptides

AP-1: Activation protein-1

APAF-1: Apoptotic protease activating factor 1

APCs: Antigen-presenting cells

APRIL: A proliferation-inducing ligand

BAFF: B cell-activating factor

Bak: BCL-2 homologous antagonist/killer

Bax: Bcl2 associated X protein

Bcl2: B-cell CLL/lymphoma 2

Bcl-xl: B-cell lymphoma-extra large

Bid: Bcl-2 interacting domain

BLyS: B-lymphocyte stimulator

cAMP: Cyclic adnosine monophosphate

CCL: Chemokine (C-C motif) ligand

CCR: Chemokine C-C Receptor

CD: Cluster of Differentiation

CDK4: Cyclin-Dependent Kinase 4

CLA: Cutaneous lymphocyte antigen

CREB: cAMP-responsive element-binding protein

CXCL: Chemokine (C-X-C motif) ligand

DC: Dendritic cells

DD: Death Domain

DDC: Dermal dendritic cells

DIABLO: IAP binding protein with low pl

DNA: Deoxyribonucleic acid

E2F: E2 Transcription Factor

ECAM: Endothelial cell adhesion molecule.

EGF-R: Epidermal growth factor receptor

ELISA: Enzyme linked immunosorbent assay

FADD: Fas-associated death domain

FLIP: FLICE/caspase-8-Inhibitory Protein

GDH: Glucose Dehydrogenase

GM-CSF: Granulocyte-macrophage colony-stimulating factor

GRO α : Growth related oncogene alpha

H: Histone

HAT: Histone acetyltransferase

HDAC: Histone deacetylase

HLA: Human leucocyte antigen

HPV: Human papilloma virus

IAP: Inhibitor of apoptosis

ICAD: Inhibitor of caspase activated DNase

ICAM: Intracellular adhesion molecule

IFN-α: Interferon alpha

IFN-γ: Interferon gamma

IGF-1: Insulin-like growth factor-1

IKB: Inhibitors of kappa-B

IKK: I Kappa B Kinase

IL: Interleukin

iNOS: Inducible nitric oxide synthase

Kc: Keratinocyte

kDa: Kilodalton

KGF: Keratinocyte growth factor

LFA: Lymphocyte functional antigen

Lys: Lysine

MHC: Major histocompatibility complex

MiRNA: microRNA

MMP-9: Metalloproteinases 9

mRNA: Messenger ribonucleic acid

mTOR : Mammalian target of rapamycin

n: Number

NAD: Nicotinamide adenine dinucleotide

NAM: Nicotinamide

NF-IL-6: Nuclear factor IL-6

NF-κB: Nuclear factor kappa-B

NGF: Nerve growth factor

NK: Natural Killer

O-AADPR: O-acetyl-ADP-ribose PAI-2: Plasminogen activator inhibitor type 2 **PASI:** Psoriasis area and severity index **PBMCs:** Peripheral blood mononuclear cells PCNA: Proliferating Cell Nuclear Antigen **pDC:** Plasmacytoid dendritic cells PGE2: Prostaglandin E2 **pRB:** Retinoblastoma protein **RANKL:** Receptor activator of NF-kB ligand **RANTES:** Regulated on Activation, Normal T Cell Expressed and Secreted Rb: Retinoblastoma RelA: V-Rel Avian Reticuloendotheliosis Viral Oncogene Homolog A **RIP:** Receptor interacting protein RNA Pol 1: Ribonucleic acid Polymerase 1 **RNA:** Ribonucleic acid rRNA: Ribosomal ribonucleic acid **SD:** Standard deviation Sir2: silent information regulator **SIRT:** Sirtuin SKALP: Skin-derived_antileukoproteinase_ SLE: Systemic lupus erythematosus **SMAC:** second mitochondria-derived activator of caspases direct SOCS3: Suppressor of Cytokine Signaling 3

STACs: Selective sirtuin activating compounds STAT-3: Signal transducer and activator of transcription 3 TACE: Tumor necrosis factor alpha converting enzyme TCR: T cell receptor TGF: Transforming growth factor Th: T helper **TLRs:** Toll like receptors **TNFRI:** Tumor necrosis factor alpha Receptor I **TNF-α:** Tumor Necrosis Factor-alpha TRADD: TNF receptor associated death domain TRAF2: TNF receptor associated factor-2 TRAIL: TNF-related apoptosis-inducing ligand **Treg:** T regulatory **TWEAK:** TNF-like and weak inducer of apoptosis Tyr: Tyrosine UV: Ultraviolet VCAM: Vascular cell adhesion molecule **VEGF:** Vascular endothelial growth factor **VIP:** Vasoactive intestinal peptide VLA: Very late antigen VPF: Vascular permeability factor

List of Figures

Figure	Title	Page
Figure 1	Histopathology of psoriasis	5
Figure 2	Immunopathogenesis of psoriasis.	8
Figure 3	Pathways engaged by IL-12 and IL-23.	9
Figure 4	Key cells and mediators in the transition from innate to	10
	adaptive immunity in psoriasis.	
Figure 5	T cell activation.	12
Figure 6	Five steps of skin infiltration of T cells.	14
Figure 7	Roles of IL-23 and IL-22 in psoriasis.	19
Figure 8	Representation of TNF- α biology.	30
Figure 9	Extrinsic and Intrinsic pathways of apoptosis.	35
Figure 10	Apoptosis vs. survival induced by TNF-α.	38
Figure 11	Functions and biological substrates of sirtuins	41
Figure 12	Cellular location of sirtuins.	42
Figure 13	Structure of sirtuins.	44
Figure 14	Mechanism of action of sirtuins.	45
Figure 15	Epigenetics of psoriasis.	47
Figure 16	Modulation of NF-кВ by SIRT1 and SIRT6	56
Figure 17	Schematic model of regulation of IL-22-induced signaling of	58
	STAT3 in human keratinocytes by IFN-γ via SIRT1 inhibition.	
Figure 18	Sirtuins regulate multiple aspects of the cell cycle.	60

Figure	Title	Page
Figure 19	SIRT1 in patients (lesional and non-lesional skin) and	79
	controls.	
Figure 20	TNF- α in patients (lesional and non-lesional skin) and	79
	controls.	
Figure 21	Correlation between non-lesional SIRT1 and non-lesional	86
	TNF-α among cases.	

List of Tables

Table	Title	Page
Table 1	The role of cytokines produced by keratinocytes and T	16
	lymphocytes in psoriasis.	
Table 2	Potential anti-apoptotic and pro-apoptotic effects of TNF- α	39
	and NF-кB.	
Table 3	Overview of sirtuins location, function, substrates and	45
	activity.	
Table 4	Sirtuins and skin cancers.	52
Table 5	PASI score.	64
Table 6	Demographic and clinical data of patients and control.	74
Table 7	Comparison of age, sex and skin type between patients and	75
	controls.	
Table 8	Comparison between SIRT1 levels in lesional and non-lesional	78
	skin in patients and its levels in controls.	
Table 9	Comparison between TNF- α levels in lesional and non-	78
	lesional skin in patients and its levels in controls.	
Table 10	Comparison of mean SIRT1 and TNF- α between male and	80
	female patients.	
Table 11	Comparison of mean SIRT1 and TNF- α between male and	80
	female controls.	
Table 12	Comparison of mean SIRT1 and TNF- α between different skin	81
	types in patients.	

Table	Title	Page
Table 13	Comparison of mean SIRT1 and TNF- α between different skin	82
	types in controls.	
Table 14	Correlations between mean tissue SIRT1, TNF- α and PASI	82
	score with age in patients.	
Table 15	Correlations between mean tissue SIRT1 and TNF- α with age	83
	in controls.	
Table 16	Correlation of mean tissue SIRT1 and TNF- $\!\alpha$ with disease	83
	duration in patients.	
Table 17	Correlations between mean tissue SIRT1 and TNF- $\!\alpha$ with	84
	extent in patients.	
Table 18	Correlations between mean tissue SIRT1 and TNF- α with PASI	84
	score in patients.	
Table 19	Correlations between tissue levels of SIRT1 and TNF- α in	85
	patients.	
Table 20	Correlation between tissue levels of SIRT1 and TNF- α in	86
	controls.	

XI

Introduction