



# A NEW TRANSMISSION EXPANSION PLANNING MODEL BASED ON AC LOAD FLOW

By

### Kareem Mohamed Ibrahim Ali

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of **MASTER OF SCIENCE** In

Electrical power & machines engineering

Faculty of engineering, Cairo University Giza, Egypt 2018

## A NEW TRANSMISSION EXPANSION PLANNING MODEL BASED ON AC LOAD FLOW

By Kareem Mohamed Ibrahim Ali

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

In

Electrical power & machines engineering

Under the Supervision of **Prof. Dr. Mahmoud Aly Mahmoud Farrag** Electrical Power and Machines Department

Faculty of Engineering, Cairo University

Faculty of engineering, Cairo University Giza, Egypt 2018

## A NEW TRANSMISSION EXPANSION PLANNING MODEL BASED ON AC LOAD FLOW

By

Kareem Mohamed Ibrahim Ali

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of **MASTER OF SCIENCE** 

In

**Electrical power & machines engineering** 

#### **Approved by the Examining Committee**

Prof. Dr. Mahmoud Ali Mahmoud Farrag

Prof. Dr. Zeinab Mohamed Osman

Dr. Ashraf Magid Rezkalla EETC, Ultra High Voltage Section Thesis main Advisor

Internal Examiner

External Examiner

Faculty of engineering, Cairo University Giza, Egypt 2018 **Engineer's name:** Kareem Mohamed Ibrahim Ali **Date of Birth:** 24/7/1988 Nationality: Egyptian E-mail: eng.k\_mohamed@yahoo.com **Phone:** +201093478155Address: 17- Madenet Elnekabat - Nasr City -Cairo **Registration Date:** 1/10/2012 **Awarding Date:** /2018**Degree:** Master of Science **Department: Electric Power & Machines** 



**Supervisors:** 

Prof. Dr. Mahmoud Ali Mahmoud Farrag

#### **Examiners:**

Dr. Ashraf Magid (External Examiner) EETC- Ultrahigh voltage Sector Prof. Dr. Zeinab Osman (Internal Examiner) Prof. Dr. Mahmoud Ali Farrag (Thesis Advisor)

#### **Title of Thesis:**

#### A NEW TRANSMISSION EXPANSION PLANNING MODEL BASED ON AC LOAD FLOW

#### **Key Words:**

Transmission expansion planning problem, linear programming based model, mixed integer linear programming based model, mixed integer nonlinear programming using AC load flow, comparative study.

#### **Summary:**

Power system transmission expansion planning is one of the most important studies applied on the power grid; this study performs an important role in estimating the number of new transmission line which will be added to the network to achieve the loading conditions and technical constraints at target year with minimum cost.

More than one model can be used to perform this study. In this thesis we concentrate on a new model based on the AC load flow constraints equations, and compare the get results with the data get from the linear programming and mixed integer linear programming based model.

### ACKNOWLEDGEMENTS

I would first like to thank my thesis advisor Prof. Dr. Mahmoud Farrag, professor of Electrical Power Engineering, Cairo University for his kind supervision of the present research study, for his academic support, for his huge amount of information and experiences, for his following of the work during its all stages, and for his effort in the completion of this work. The door to Prof. Farrag office was always open whenever I ran into a trouble spot or had a question about my research or writing. He consistently allowed this thesis to be my own work, but steered me in the right direction whenever he thought I needed it.

Finally, I must express my very profound gratitude to my parents, wife, daughter and sisters for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. This accomplishment would not have been possible without them. Thank you.

### **Table of Contents**

| ACKNOWLEDGMENTS                                            | I       |
|------------------------------------------------------------|---------|
| TABLE OF CONTENTS                                          | II      |
| LIST OF TABLES                                             | III     |
| LIST OF FIGURES                                            | IV      |
| LIST OF SYMBOLS                                            | V       |
| ABSTRACT                                                   | VI      |
| CHAPTER 1: AN INTRODUCTION TO TRANSMISSION SYSTEM          | _       |
| EXPANSION PLANNING BROBLEM                                 | 1       |
| 1.1. INTRODUCTION                                          | 1       |
| 1.2. TRANSMISSION EXPANSION PLANNING PROBLEM (TEPP)        | 1       |
| 1.3. TREATMENT OF THE PLANNING HORIZON                     | 2       |
| 1.4. LOAD CURVE AND LOSS FACTOR                            | 6       |
| 1.5. HANDLING OF NUMBER OF CIRCUITS ADDED AND CONDUCTOR    |         |
| SIZE(AREA)                                                 | 7       |
| 1.6. RELATION BETWEEN MAXIMUM POWER LIMIT OF LINE AND LINE | 0       |
| LENGIH                                                     | ð<br>11 |
| 1.7.1 Mathematical Ontimization Models                     | 11      |
| 1.7.2. Heuristic Models                                    | 11      |
| 1.7.3. Meta- heuristic Models                              | 12      |
| 1.8. THESIS OBJECTIVES AND OUTLINES                        | 12      |
| CHAPTER 2: MATHEMATICAL SIMULATION OF TRANSMISSIO          | Ν       |
| SYSTEM COSTS AND CONSTRAINED                               |         |
| EQUATIONS                                                  | 15      |
| 2.1. INTRODUCTION                                          | 15      |
| 2.2. MATHEMATICAL OPTIMIZATION PLANNING PROBLEM            | 15      |
| 2.3. MATHEMATICAL SIMULATION OF THE SYSTEM'S COST ITEMS    | 16      |
| 2.3.1. Capital Cost of New Lines                           | 16      |
| 2.3.2. Capital Cost of Reconductoring an Existing Line     | 19      |
| 2.3.3. Cupper (Energy) Loss Cost.                          | 20      |
| 2.3.4. Demand Loss Cost                                    | 22      |

| 2.3.5. Operation and Maintenance Cost                                                                              | 3      |
|--------------------------------------------------------------------------------------------------------------------|--------|
| 2.3.6. Lines Outage Cost23                                                                                         | 3      |
| 2.3.7. Summation of Line Costs                                                                                     | 1      |
| 2.3.8. Approximate Forms of Line Cost25                                                                            |        |
| 2.4.MATHEMATICAL SIMULATION OF TRANSMISSION SYSTEM                                                                 |        |
| CONSTRAINTS                                                                                                        | ;<br>) |
| 2.4.1. Load flow Constrained Equations                                                                             |        |
| 2.4.2. Inequality Constrained Equations                                                                            |        |
| 2.5.CONCLUSION                                                                                                     |        |
| CHAPTER 3: A LINEAR PROGRAMMING BASED MODEL FOR                                                                    |        |
| TRANSMISSION SYSTEM EXPANSION PLANNING                                                                             |        |
| PROBLEM31                                                                                                          |        |
| 3.1. INTRODUCTION                                                                                                  | 1      |
| 3.2. LINEAR PROGRAMMING BASED PLANNING MODEL                                                                       |        |
| 3.3. MODEL APPLICATION AND LINE ADDITION PROCESS                                                                   |        |
| 3.3.1. Principal of line Addition                                                                                  |        |
| 3.4. TEST EXAMPLE                                                                                                  |        |
| 3.5. CONCLUSION                                                                                                    |        |
|                                                                                                                    |        |
| CHAPTER 4: A MIXED INTEGER LINEAR PROGRAMMING BASED<br>MODEL FOR TRANSMISSION SYSTEM EXPANSION<br>PLANNING PROBLEM | •      |
| CHAPTER 4: A MIXED INTEGER LINEAR PROGRAMMING BASED<br>MODEL FOR TRANSMISSION SYSTEM EXPANSION<br>PLANNING PROBLEM | )      |
| CHAPTER 4: A MIXED INTEGER LINEAR PROGRAMMING BASED<br>MODEL FOR TRANSMISSION SYSTEM EXPANSION<br>PLANNING PROBLEM | )      |
| CHAPTER 4: A MIXED INTEGER LINEAR PROGRAMMING BASED<br>MODEL FOR TRANSMISSION SYSTEM EXPANSION<br>PLANNING PROBLEM |        |
| CHAPTER 4: A MIXED INTEGER LINEAR PROGRAMMING BASED<br>MODEL FOR TRANSMISSION SYSTEM EXPANSION<br>PLANNING PROBLEM |        |
| CHAPTER 4: A MIXED INTEGER LINEAR PROGRAMMING BASED<br>MODEL FOR TRANSMISSION SYSTEM EXPANSION<br>PLANNING PROBLEM |        |
| CHAPTER 4: A MIXED INTEGER LINEAR PROGRAMMING BASED<br>MODEL FOR TRANSMISSION SYSTEM EXPANSION<br>PLANNING PROBLEM |        |
| CHAPTER 4: A MIXED INTEGER LINEAR PROGRAMMING BASED<br>MODEL FOR TRANSMISSION SYSTEM EXPANSION<br>PLANNING PROBLEM |        |
| CHAPTER 4: A MIXED INTEGER LINEAR PROGRAMMING BASED<br>MODEL FOR TRANSMISSION SYSTEM EXPANSION<br>PLANNING PROBLEM |        |
| CHAPTER 4: A MIXED INTEGER LINEAR PROGRAMMING BASED<br>MODEL FOR TRANSMISSION SYSTEM EXPANSION<br>PLANNING PROBLEM |        |
| CHAPTER 4: A MIXED INTEGER LINEAR PROGRAMMING BASED<br>MODEL FOR TRANSMISSION SYSTEM EXPANSION<br>PLANNING PROBLEM |        |
| CHAPTER 4: A MIXED INTEGER LINEAR PROGRAMMING BASED<br>MODEL FOR TRANSMISSION SYSTEM EXPANSION<br>PLANNING PROBLEM |        |
| CHAPTER 4: A MIXED INTEGER LINEAR PROGRAMMING BASED<br>MODEL FOR TRANSMISSION SYSTEM EXPANSION<br>PLANNING PROBLEM |        |

| 5.2. DC LOAD FLOW BASED MODEL AND VOLTAGE PROBLEM                                                 | 57               |
|---------------------------------------------------------------------------------------------------|------------------|
| 5.3. NORMAL FORM OF AC LOAD FLOW EQUATIONS                                                        | 58               |
| 5.4. SIMPLIFIED AC LOAD FLOW EQUATION                                                             | 59               |
| 5.5. MODIFICATION OF THE POWER FLOW ON NEW LINES                                                  | 64               |
| 5.6. MATHEMATICAL PLANNING MODEL                                                                  | 65               |
| 5.6.1. COST FUNCTION                                                                              | 65               |
| 5.6.2. CONSTRAINED EQUATIONS                                                                      | 65               |
| 5.7. TEST EXAMPLE                                                                                 | 68               |
| 5.7.1. COMPARISON BETWEEN DC & AC LOAD FLOW RESULTS                                               | 68               |
| 5.7.2. TRANSMISSION NETWORK PLANNING USING THE AC LOA                                             | D                |
| FLOW MATHEMATICAL PLANNING MODEL                                                                  | 72               |
| CHAPTER 6: CONCLUSIONS AND FUTURE WORK                                                            | 77               |
| 6.1. CONCLUSIONS                                                                                  | 77               |
| 6.2. RECOMMENDATIONS FOR FUTURE WORK                                                              | 77               |
| REFERENCES                                                                                        | 79               |
| APPENDIX A: TEST EXAMPLE DATA                                                                     | 83               |
| APPENDIX B: MIXED INTEGER NONLINEAR PROGRAMMIN<br>BASED PLANNING MODEL FULL CODE AND I<br>RESULTS | NG<br>FULL<br>89 |

### **List of Tables**

| Table (3.1): Results of DC load flow using existing lines at target year                                         |
|------------------------------------------------------------------------------------------------------------------|
| Table (3.2): First iteration data resulted of DC linear programming technique                                    |
| Table (3.3): Second iteration data resulted of DC linear programming technique                                   |
| Table (3.4): The final added lines by linear planning model40                                                    |
| Table (3.5): Last iteration power flow on all lines41                                                            |
| Table (4.1): Power flow on all lines for mixed integer model                                                     |
| Table (4.2): Cost of lines resulted from linear technique                                                        |
| Table (4.3): Cost of lines resulted from mixed integer linear technique                                          |
| Table (5.1): Comparison between real power flow at full reactive load resulted from DCload flow and AC load flow |
| Table (5.2): Comparison between real power resulted from DC load flow and AC load flow with no reactive load     |
| Table (5.3): Voltages magnitudes from AC load flow 71                                                            |
| Table (5.4): Generation reactive power                                                                           |
| Table (5.5): Total cost at +10 voltage limits 73                                                                 |
| Table (5.6): Total cost at ±5 voltage limits 73                                                                  |
| Table (5.7): Comparison between data resulted from different techniques 74                                       |

## List of figures

| Figure (1.1): Static planning problem4                                                     |
|--------------------------------------------------------------------------------------------|
| Figure (1.2): Dynamic planning problem5                                                    |
| Figure (1.3): Load curve7                                                                  |
| Figure (1.4): Relation between power limit and line length10                               |
| Figure (2.1): Mathematical simulation of the system's cost items                           |
| Figure (2.2): Accurate simulation of the system's cost items19                             |
| Figure (2.3): Capital cost of reconductoring an existing line20                            |
| Figure (3.1): Example for node equation                                                    |
| Figure (3.2): Example for loop equation                                                    |
| Figure (3.3): The initial network containing existing lines only                           |
| Figure (3.4): The network containing all existing and proposed lines                       |
| Figure (3.5): Optimum network obtained by linear programming technique42                   |
| Figure (4.1): A basic loop having one new line48                                           |
| Figure (4.2): The optimum network obtained from mixed integer linear programming technique |
| Figure (5.1): The line power flow at start and end                                         |
| Figure (5.2): The power balance at each bus60                                              |
| Figure (5.3): Planning results with ±10 % voltage limit75                                  |
| Figure (5.4): Planning results with ±5 % voltage limit                                     |

## List of symbols

| $a_k$             | Constant coefficient for new line k                   |
|-------------------|-------------------------------------------------------|
| $b_k$             | Constant coefficient for new line k                   |
| $b_k$             | The imaginary part of the series admittance of line k |
| C <sub>k</sub>    | Capital cost of line                                  |
| $C_{kj}$          | Capital cost of step j associated with line k         |
| $C_g$             | Cost of peaking generation system in LE/KVA           |
| C <sub>e</sub>    | Cost of unit energy in LE/KWA                         |
| F                 | Objective function of any form                        |
| f <sub>k</sub>    | Cost function of new line k                           |
| $g_k$             | The real part of the series admittance of line k      |
| I <sub>k</sub>    | Current flow on line k                                |
| I <sub>maxk</sub> | Maximum current flow on line k                        |
| I <sub>mk</sub>   | The imaginary part of current flow $I_k$              |
| I <sub>rk</sub>   | The real part of current flow $I_k$                   |
| i                 | Inflation rate                                        |
| i <sub>g</sub>    | Annual charge rate of generation system               |
| g <sub>i</sub>    | Constrained equations on the x variables with i=1,2,m |
| K                 | Large positive value                                  |
| k1(i)             | Set of lines (existing and new) connected to bus i    |
| k2(l)             | Set of lines existing lines found in basic loop l     |
| k3(l)             | Set of new lines with basic loop l                    |
| LE                | Set of basic loops having only existing lines         |

| L                    | Number of basic loops                               |
|----------------------|-----------------------------------------------------|
| $L_K$                | Length of line k                                    |
| $l_s$                | Loss factor                                         |
| М                    | Total number of lines (existing and proposed).      |
| M1                   | Number of proposed lines                            |
| M2                   | Number of existing lines                            |
| Ν                    | Number of buses (where bus N is the reference bus)  |
| n                    | Line life in years                                  |
| nc(k)                | Maximum number of circuits associated with line k   |
| Ns(k)                | The planning period of study (number of steps)      |
| $P_{kh}^l$           | Power flow on segment l of step h of new line k     |
| $PL_k$               | Annual energy loss cost associated with line k      |
| $PD_k$               | Annual cost of demand loss associated with line k   |
| PIi                  | Active power injected at bus i                      |
| PG <sub>i</sub>      | Active power generated at bus i                     |
| PD <sub>i</sub>      | Active power demand at bus i                        |
| P <sub>k</sub>       | Real power flow on new line k                       |
| P <sub>100+k</sub>   | Real power flow on line k in the opposite direction |
| P <sub>maxk</sub>    | Maximum allowable power on line k                   |
| $P_k^i$              | The active power flow on line k from bus i          |
| $P_k^j$              | The active power flow on line k from bus j          |
| $\boldsymbol{q}_k^i$ | The reactive power flow on line k from bus i        |
| $\boldsymbol{q}_k^j$ | The reactive power flow on line k from bus j        |
| $Q_k$                | Reactive power flow on line k                       |

| $QI_i$            | Reactive power injected at bus i                                              |
|-------------------|-------------------------------------------------------------------------------|
| $QG_i$            | Reactive power generated at bus i                                             |
| $QD_i$            | Reactive power demand at bus i                                                |
| QSi               | Reactive power injected from shunt reactive source existing at bus i, if any. |
| $r_k$             | Series Resistance of line k                                                   |
| $\acute{R_g}$     | Reserve factor of generation system                                           |
| $S_k$             | Apparent power flow on line k                                                 |
| S <sub>maxk</sub> | Maximum apparent power flow on line k                                         |
| $\bar{S}_k$       | Annual loss cost for unit power transmitted on line k                         |
| $SD_k$            | Annual demand cost for unit power transmitted on line k                       |
| $S_{kj}^l$        | Cost of unit power transmitted on segment l of step j of new line k           |
| Т                 | Time in hours                                                                 |
| V <sub>max</sub>  | Maximum permissible voltage magnitude.                                        |
| V <sub>min</sub>  | Minimum permissible voltage magnitude.                                        |
| V <sub>i</sub>    | Voltage magnitude of bus i                                                    |
| $V_j$             | Voltage magnitude of bus j                                                    |
| <i>w</i> (h)      | Number of linear segments used for step h                                     |
| w(l)              | Number of new lines with basic loop l                                         |
| $x_{l_k}$         | Series Reactance of line k per unit length                                    |
| $X_k$             | Power or current flow on line k                                               |
| Х                 | Set of variables of n dimension                                               |
| Y <sub>ij</sub>   | The magnitude of the element ij <sup>th</sup> of bus admittance matrix        |
| $Z_k$             | Zero-one integer variable related to line k                                   |
| $Z_{kj}$          | Zero – one integer variable associated with step j of line i                  |

| Maximum angle permitted for line ij                  |
|------------------------------------------------------|
| Angle of voltage of bus i                            |
| Maximum line angle permitted                         |
| The angle of transfer admittance between bus i and j |
|                                                      |

### ABSTRACT

Present days power systems have a long stage and highly complicated transmissions systems which cost thousands of millions of dollars. Due to the steady annual growth rate, the expansion planning of these large size networks is a complicated nonlinear optimization problem .The solution of this problem using normal optimization tools has been made using nearly every type of these optimization tools, linear, nonlinear, integer and mixed integer programming techniques. The developed model for the application of each tool has its own merits and demerits. Normally, the DC load flow model has been utilized in all or most of these models.

In this thesis, two mathematical models has been presented to be solved by linear programming technique and mixed integer linear programming technique. The existence of the integer variables in the second case has proved to offer large advantages regarding both the cost function and the constrained equations .The capital cost of new lines is correctly simulated and the voltage loop equations containing new lines have been correctly simulated with the fact that a correct or highly accurate mathematical model has been reached .

In the last part of this thesis the AC load flow equations have been simplified and modified in order to replace DC load flow constrained equations by AC load flow one. This permits the considering of reactive power and bus voltage in the mathematical developed model. The AC load flow equations are the exact equations governing the power flow in the transmission system. Also bus voltage magnitudes constraints and stability constraints can be explicitly considered.

This mathematical model which depends on AC load flow gives the perfect planned network that satisfies all quality constraints imposed on the transmission system with the possible least cost .However, on the other side mixed integer - nonlinear programming technique is relativity difficult and consumes large computational time.