Role of new MRI modalities (MR spectroscopy, perfusion and diffusion tensor imaging) in Multiple sclerosis

Essay Submitted for the partial fulfillment of the M.Sc degree in Radiodiagnosis

> Presented by Amal Abd-Allah Mohamed Afifi M.B.B.ch Cairo University

Supervised by Prof. Dr.Ihab Ismail Ali Bakr

Professor of Radio diagnosis Faculty of Medicine Cairo University

Dr.Nahla El-Gizawy

M.D Radio diagnosis Fellow of Kasr El-Aini Radiology department Cairo University -Student's Hospital

> Faculty of medicine Cairo University 2012

Abstract

Despite technological advances in imaging, multiple sclerosis (MS) remains a clinical diagnosis that is supported, but not replaced, by laboratory or imaging findings. However, imaging is essential in the current diagnostic criteria of MS, for prediction of the likelihood of MS for patients with clinically isolated syndromes, correlation with lesion pathology and assessment of treatment outcome.

Key word

MRI- Spectroscopy-Multiple Sclerosis-MRI modalities-Radiodiagnosis

ACKNOWLEDGEMENT

Firstly and lastly, thanks are all to **Allah** for blessing me this work until it reached its end, as a little part of his generous help throughout life.

No words could satisfy my extreme unlimited gratitude for **Prof. Dr.Ihab Ismail Ali Bak**, Professor of Radiodiagnosis, Faculty of Medicine, Cairo University and **Dr.Nahla El-Gizawy**, M.D Radio diagnosis and Fellow of Kasr El-Aini Radiology department, Cairo University -Student's Hospital , who supervised this work in a keen way and whose scientific way of thinking , unlimited experience, objective pieces of advice, valuable suggestions , endless help and ever fatherly attitude encouraged me to develop interest in this subject. They generously gave me, in every possible way, a lot of their elegant ideas and much of their precious time during supervising and revising this whole work.

Lastly but not least, I would like to thank my dear parents, my brother and my sister for their constant support, encouragement and prayers for providing me the environment needed for concentration and progress.

LIST OF CONTENTS

Chapter	Page
Acknowledgment	i
• List of Contents	ii
• List of Tables	iii
• List of Figures	iv
List of Abbreviation	vii
• Introduction & aim of work	1
• Review of Literature:	
MS background :	
History	5
Pathology	8
Diagnosis of MS	19
Imaging of MS	38
New imaging modalities :	
Physical principles of diffusion tensor MRI imaging	46
Role Of Diffusion Tensor Mri In Multiple Sclerosis	62
Physical principles of magnetic resonance spectroscopy	83
Role of magnetic resonance Spectroscopy in Multiple sclerosis	103
Physical principles of perfusion MR techniques	124
Role of perfusion in multiple sclerosis	135
Summary and Conclusion	144
References	155
Arabic Summary	167

LIST OF TABLES

TABLE NO	TITLE	PAGE
Table 1	Classic MS and its variants.	28
Table 2	Clinically isolated syndromes	31
Table 3	2010 Mcdonald MRI Criteria for Demonstration of DIS	35
Table 4	2010 McDonald MRI Criteria for Demonstration of DIT	35
Table 5	The 2010 McDonald Criteria for Diagnosis of MS	36
Table 6	Diffusion-derived and tractography-derived measures commonly reported in clinical studies	55

LIST OF FIGURES

FIG. NO	TITLE	PAGE
Figure 1	Illustrative classic neuropathology of MS	9
Figure 2	Illustration of MRI-pathology correlation in MS	13
	in a formalin-fixed cerebral hemisphere	
Figure 3	Course of Multiple sclerosis	27
Figure 4	MS plaques onT1 weighted MRI, postcontrast	41
	infusion	
Figure 5	T2WI (A), FLAIR (B), and contrast-enhanced	42
	T1WI of a 30-year-old female RRMS patient.	
Figure 6	Typical MS with brain lesions	43
Figure 7	Typical MRI Lesions in MS	43
Figure 8	Brownian motion of a microscopic particle	47
Figure 9	Isotropic and anisotropic diffusion of water	48
	molecules in diffusion MRI.	
Figure 10	Fiber tracts have an arbitrary orientation with	51
	respect to scanner geometry (x, y, z axes) and	
	impose directional dependence (anisotropy) on	
	diffusion measurements.	
Figure 11	A, FA map without directional information.	53
	B, Combined FA and directional map.	54
Figure 12	Diffusion imaging including ADC map (a), FA	54
	map (b), and diffusion tensor tracking image (c)	
	from a patient with early MS. Note that the MS	
	lesion (arrow) presents abnormal diffusion	
F ¹	White metter fiber treate graphy. Left: Soud POL	56
Figure15	white matter liber tractography. Left: Seed ROI	50
	image Dight: Target POI (sphere) was set	
	around at pyramidal area	
Figure 1/	Schematic diagram of a streamline tractography	57
Figure 14	approach	01
Figure 15	Fiber crossing Top: Fiber crossing point is	60
I Iguite 15	shown by an arrow Bottom: Local anisotropy is	
	visualized by ellipsoids and coronal image	
Figure 16	Multiple sclerosis in a 28-year-old man	64
-9	presenting with visual problems	

Figure 17	Multiple sclerosis in a 59-year-old man with a	65
0	long history of recurrent seizures.	
Figure 18	Example of MRI diffusion weighted images	66
	(DWI) from the Buffalo Neuroimaging Analysis	
	Center in a 44 year-old man with SP MS.	
Figure 19	Selected axial and sagittal diffusion tensor maps	68
	from a patient with multiple sclerosis. Mean	
	diffusivity (A, B), fractional anisotropy (C, D)	
	and color primary eigenvector map (E, F)	
Figure 20	Fiber tractography in a patient with MS (A) and a	75
	healthy volunteer (B).	
Figure 21.	Composite image showing information from	77
	several sequential MRI scans of a patient with	
	MS The transparent brain surface shows the	
	location of the lesions (red) determined from a	
	T2- weighted image.	
Figure 22	3D DTI-tractography of the corpus callosum	78
	(CC)	
Figure 23	Unsuppressed water proton spectrum of a human	87
	brain tumor	
Figure 24	Water suppressed proton spectrum of a human	88
	brain tumor	00
Figure 25	Single-voxel localization techniques	90
Figure 26	2D-PRESS-MRSI pulse sequence	95
Figure 27	Diagram of proton MR spectrum of an adult	99
F ' 20	brain	100
Figure 28	Representative spectrum of the human brain in	100
Eigung 20	VIVO	106
rigure29	spectra representing the metabolic patients in a focal inflammatory demyalingting losion	100
Figure 30	Proton brain MPI/MPSI avaminations of a	107
rigule Sv	multiple sclerosis patient performed during the	107
	acute phase of the disease (left) 1 month later	
	(center) and 6 months later (right)	
Figure 31	Magnetic resonance spectroscopy findings for a	109
I Iguite 51	total of 66 T2-weighted lesions that had persisted	
	for at least 6 months in one or another of 9	
	relapsing-remitting multiple sclerosis (MS)	
	patients	
Figure 32	Application of outer volume suppression bands to	112
	minimize extrameningeal tissue contamination	

Figure 33	(a) Normal spectra at TE of 136 ms (A), 18 ms	116
	(B) from a VOI (C) in the left centrum	
	semiovale. Glx: glutamine _ glutamate; Lip _ aa:	
	lipids and amino acids; mI: myoinositol.	
Figure 34.	Axial gradient-echo echo-planar MRI showing	125
	cerebral blood flow and volume in a	
	patient with MS	
Figure 35	T2* weighted PRESTO (Principles of echo-	129
	shifting with a train of observations) magnitude	
	images before the contrast agent arrival (top left	
	image) and at several time points during the	
	contrast passage through the brain vasculature.	
Figure 36	Diagram explaining calculation of relative	130
	cerebral blood volume, cerebral blood flow, and	
	mean transit time using dynamic contrast-	
	enhanced T2-weighted technique	
Figure 37 a–c	Generation of the concentration-time curve	132
Figure 38	The resulting CBF, CBV and MTT maps after	133
	post processing of the data	

LIST OF ABBREVIATIONS

ADC	Apparent diffusion coefficient
AIF	Arterial input function
ASL	Arterial spin labeling
BAT	The time of arrival
BBB	Blood brain barrier
САТ	Computed Axial Tomography
CBF	Cerebral blood flow
CBV	Cerebral blood volume
CCSVI	Chronic cerebrospinal venous insufficiency
CDMS	Clinically definite MS
CHESS	Chemical shift selective saturation
CSI	Chemical Shift Imaging
Cho	Choline
CIS	Clinically isolated syndromes
C-MRI	Conventional magnetic resonance
CNS	Central nervous system
Cr	Creatine
CSF	Cerebrospinal fluid
CST	Cortico-spinal tract
DIS	Dissemination in space
DIT	Dissemination in time
DSC	Dynamic Susceptibility Contrast
DTI	Diffusion tensor imaging
DWI	Diffusion Weighted imaging
EDSS	Expanded Disability Status Scale
EPI	Echo-planar imaging

FA	Fractional anisotropy
GA	Glatiramer acetate
Gd	Gadolinium
Gln	Glutamine
Glu	Glutamate
GM	Gray matter
НА	Hunter's angle
HARDI	High angular resolution diffusion imaging
H MRS	Proton Magnetic resonance spectroscopy
Lac	lactate
MAG	Myelin-associated glycoprotein
MD	Mean diffusivity
MTI	Magnetization transfer imaging
MTT	Mean transit time
MRI	Magnetic resonance imaging
MRS	Magnetic resonance spectroscopy
MRSI	Magnetic resonance spectroscopic imaging
mI	myoinositol
NAA	N-acetylaspartate
NAAG	N-acetyl aspartyl glutamate
NAGM	Normal-appearing gray matter
NAWM	Normal-appearing white matter
NMO	Neuromyelitis optica
NMSS	National Multiple Sclerosis Society
NP	Neuropsychological
PRESS	point reserved spectroscopy
ppm	parts per million
PPMS	Primary progressive multiple sclerosis

PRMS	Progressive relapsing multiple sclerosis
rCBV	Relative cerebral blood volume
RGB	Red, green, and blue
ROI	Region of interest
RRMS	Relapsing remitting multiple sclerosis
SNR	Signal-to-noise ratio
SPMS	Secondary progressive multiple sclerosis
STEAM	Stimulated echo acquisition mode
ТА	Time of arrival
ТЕ	Echo time
ТТР	Time to peak
TR	Repetition time
VOI	Volume of interest
WBNAA	whole-brain NAA concentration
WM	White matter

Introduction

Multiple Sclerosis (MS) is a chronic inflammatory-demyelinating and neurodegenerative disease of the central nervous system (CNS) and the most common cause of non-traumatic disability in young and middle-age .Pathologically, MS is characterized by areas of demyelinated plaques scattered throughout the CNS. The patterns of multiple sclerosis include: Relapsing-remitting, Primary-progressive, Secondaryprogressive and Progressive-relapsing

Although the diagnosis of MS is still based on clinical findings, magnetic resonance imaging (MRI) is now integrated in the diagnostic criteria of the disease because of its unique sensitivity in demonstrating dissemination in space and time of demyelinating lesions in the brain and spinal cord.

Conventional MRI (including T2-weighted, pre- and post-contrast T1weighted scans) has had a huge impact on MS by enabling an earlier diagnosis, and by providing surrogate markers for monitoring response to current disease-modifying treatments and upcoming experimental agents. Despite its increasing role in the clinical management and scientific investigation of MS, However, serial studies of lesion measures have yielded generally disappointing correlations with the development of clinical disability. A potential explanation for this is the presence of abnormalities, beyond the visible lesions, in the normal appearing white matter (NAWM) and grey matter (NAGM), so conventional MRI is limited by low pathological specificity and low sensitivity to diffuse damage in normal-appearing white matter (NAWM) and gray matter (NAGM). In addition, conventional MRI shows only limited associations with clinical status

Diffusion weighted MRI is a quantitative technique able to overcome these limitations by providing markers more specific to the underlying pathologic substrates of the disease and more sensitive to the full extent of 'occult' tissue damage in patients with MS. Diffusion measures the microscopic Brownian motion of water molecules. This motion is hindered by cellular structures such as cell membranes and axonal cytoskeletons. The diffusion tensor is a mathematical description of the magnitude and directionality (anisotropy) of water molecules movement in the three-dimensional space. Applying diffusion-weighting magnetic field gradients in many directions, one can infer the orientation of the axons, and reconstruct the pathways of the major white matter bundles by diffusion tensor MRI and so-called fiber tracking.

By use of MRI, assessment of brain tissue perfusion in vivo is now possible, abnormalities in diffusivity patterns have been seen both in focal MS lesions and in NAWM and NAGM. Acute MS lesions are characterized by increased perfusion, whereas normal-appearing white and grey matter are characterized by reduced perfusion. And there appears to exist a relationship between decreased white matter perfusion and cognitive dysfunction in patients with MS

In addition to providing information on tissue structure, magnetic resonance (MR) technology offers the potential to investigate tissue metabolism and function MR spectroscopy (MRS) offers a wealth of data on the biochemistry of a selected brain tissue volume, which represent potential surrogate markers for the pathology underlying multiple sclerosis (MS). In particular, the N-acetylaspartate peak in an MR spectrum is a putative marker of neuronal and axonal integrity, and the choline peak appears to reflect cell-membrane metabolism. On this basis, a diminished N-acetylaspartate peak is interpreted to represent neuronal/axonal dysfunction or loss, and an elevated choline peak represents heightened cell-membrane turnover, as seen in demyelination, remyelination, inflammation, or gliosis. Therefore, MRS may provide a unique tool to evaluate the severity of MS, establish a prognosis, follow disease evolution, understand its pathogenesis, and evaluate the efficacy of therapeutic interventions, which complements the information obtained from the various forms of assessment made by conventional MR imaging

The extensive application of conventional and modern magneticresonance-based techniques to the study of MS has undoubtedly improved our ability to diagnose and monitor the disease, as well as our understanding of disease pathophysiology, As one of the most important tasks for the future is to establish how these advances in MRI technology might contribute to a better correlation between clinical and MRI findings, and thus provide relevant information to improve prognosis and predict therapeutic response.

Aim of work

The aim of the work to review the role of promising MRI approaches (diffusion tensor tractography (DTT), perfusion MR Imaging and spectroscopy) in MS discussing their pathophysiological implications and emphasizes their clinical relevance.