

Ain Shams University Faculty of Women for Arts, Science and Education Biochemistry and Nutrition Department

# The Effect of Phytoestrogen consumption on Breast Cancer in Postmenopausal Female Rats

Thesis Submitted for partial fulfillment of Ph.D. degree in Biochemistry & Nutrition

## *By* Nehad Naem Hamed Shosha

## **Supervisors**

#### Prof. Dr. Nagwa Ibrahim Yahia Hassanin

Professor of Nutrition Dept. of Biochemistry and Nutrition Faculty of women - Ain Shams University

#### Prof. Dr. Hanan Mohamed FathyAbd El Wahab

Professor of Biochemistry and Nutrition Dept. of Biochemistry and Nutrition Faculty of women - Ain Shams University

#### Dr. Amal Ashmawy Ahmed EL-Kirsh

Lecturer in Biochemistry and Nutrition Department Faculty of women - Ain Shams University

### 2016



## Acknowledgment

First I would like to thank **Allah** for giving me strength, capability and opportunity to do this work.

I offer my regards and blessings to **Prof. Dr. Nagwa Ibrahim Yahia Hassanin,** Professor of Nutrition, Biochemistry and Nutrition Department, Faculty of Women, Ain Shams University, for her sincere advice, choice of research topic, suggesting, planning the point of research and kindly support.

My deepest gratitude and sincere appreciation goes to **Prof. Dr. Hanan Mohamed Fathy Abdel-Wahab**, Professor of Biochemistry and Nutrition, Biochemistry and Nutrition Department, Faculty of Women, Ain Shams University, for her great help, guidance, appropriate, her fruitful criticism has been most helpful at all stages and continuous encouragement, she tided me over many difficulties throughout the work. No words seem to be sufficient to describe, to her owe much.

I wish to express my sincere gratitude and deep thanks to *Dr*. **Amal Ashmawy Ahmed El-Kirsh** Lecturer in Biochemistry and Nutrition Department, Faculty of Women, Ain Shams University, for sincere advice and help throughout the work, her guidance, kindness and continuous encouragement.

I would like to express my great thankful to **Dr. Hala Fahmy Abd-Ellah Sayed** Assistant Professor of Histology and Cytology. Zoology Department, Faculty of Women, Ain Shams University, for helping me during the practical histopathological part of this work.

I am grateful for the staff members of Biochemistry and Nutrition Department, faculty of women, Ain Shams university, for their help and support.

# **Dedication**

This work is dedicated to my family; my mother and my father for their love, continues help and support.

Also I am greatly thankful to my husband, for encouragement, support and help and also my daughter Sarah and my son Omr.

#### I always inspired to complete this work

## List of content

## **Content**

### page

| List of tables                                                | vi  |
|---------------------------------------------------------------|-----|
|                                                               |     |
| List of figures                                               | V   |
| Abstract                                                      | iii |
| I- Introduction                                               | 1   |
| II- Aim of the work                                           | 4   |
| III-Review of Literature                                      | 5   |
| - Basic concepts of breast carcinogenesis                     | 5   |
| - Epidemiology of breast cancer                               | 7   |
| - Risk factors for development of breast cancer               | 8   |
| - Classification of breast cancer                             | 1   |
| - Staging of breast cancer                                    | 2   |
| - Role of oxidative stress as aiding agent in initiation of 1 | 3   |
| breast cancer                                                 |     |
| - Mechanism of action between the immune system and 1         | 4   |
| inflammation in defense against breast cancer                 |     |
| • Anti-breast cancer effector cells of the immune 1           | 7   |
| system                                                        |     |
| • Tumor cell-autonomous modification that enable 1            | 8   |
| breast tumors to evade immune system                          |     |
| • Tumor cells immunosuppressive microenvironment 1            | 9   |
| of breast cancer                                              |     |
| - Animal model of breast cancer                               | 20  |
| • NMU mechanism of action                                     | 22  |
| - Phytoestrogen                                               | 23  |
| Classification of phytoestrogens                              | 24  |
| • Chrysin                                                     | 26  |
| - Estrogenic effect of phytoestrogens on breast cancer 2      | 27  |
| Effect of phytoestrogen on estrogen receptor (ER) in          |     |
| breast cancer                                                 | 31  |
| - Effect of phytoestrogens on the growth of BC in vitro       |     |

| and in vivo                                               |
|-----------------------------------------------------------|
| - Relation between timing of exposure to phytoestrogens   |
| and its effect against breast cancer risks                |
| • Effect of chrysin against breast cancer                 |
| IV-Materials and methods                                  |
| -Materials                                                |
| 1- Preparation of N-methyl-N-nitrosourea (NMU)            |
| 2- Preparation of chrysin                                 |
| 3- Biological experiment                                  |
| 3.1. Diet                                                 |
| 3.2 Animals                                               |
| 3.3 Experimental Design                                   |
| - Methods                                                 |
| 1-Samples                                                 |
| 2-Histopathological Examination                           |
| 3. Hematological parameter                                |
| 4. Serum biochemical assays                               |
| 4.1.Determination of C-reactive protein (CRP)             |
| 4.2. Determination of carcinoemberyonic antigen           |
| (CEA)                                                     |
| 4.3. Determination of estradiol level (E <sub>2</sub> ) 4 |
| 4.4. Determination of total antioxidant capacity          |
| (TAC)                                                     |
| 4.5. Determination of nitric oxide (NO)                   |
| 4.6. Determination of malondialdehyde                     |
| (MDA)                                                     |
| 4.7. Determination of arginase activity                   |
| 4.8. Determination of glutathione – S– transferase        |
| (GST) activity                                            |
| 4.9. Determination of catalase activity (CAT)             |
| 5-Statistical analysis                                    |
| III- Results                                              |
| 1. Hematological parameters                               |
| 1.1 Platelet (PLT) and white blood cell (WBC) counts,     |
| lymphocytes, monocytes and granulocytes percentage in     |
| different experimental groups                             |

| 1. 2. Levels of hemoglobin (Hb), mean corpuscular                   |    |
|---------------------------------------------------------------------|----|
| volume (MCV), mean corpuscular hemoglobin (MCH),                    |    |
| mean corpuscular hemoglobin concentration (MCHC)                    |    |
| and red cell distribution width (RDW) in different                  |    |
| experimental groups                                                 | 5  |
| 2. Biochemical assays                                               | 2  |
| 2.1. Levels of C-reactive protein (CRP),                            |    |
| carcinoemberyonic antigen (CEA), and estradiol (E <sub>2</sub> ) in |    |
| different experimental groups                                       | 2  |
| 2.2. Activities of serum arginase, Glutathion-S-                    |    |
| transeferase (GST) and catalase (CAT) in different                  |    |
| experimental groups                                                 | 8  |
| 2.3. Total antioxidant capacity (TAC), malondialdhyde               |    |
| (MDA), and nitric oxide (NO) concentrations in different            |    |
| experimental groups                                                 | 1  |
| 3. Histopathological examination                                    | )  |
| V-Discussion 10                                                     | 0  |
| 1. Hematological parameters10                                       | 0  |
| 1.1. Platelet (PLT) and white blood cell (WBC) counts,              |    |
| lymphocytes, monocytes and granulocytes percentage in               |    |
| different experimental groups                                       | 0  |
| 1.2. Levels of hemoglobin (Hb), mean corpuscular                    |    |
| volume (MCV), mean corpuscular hemoglobin (MCH),                    |    |
| mean corpuscular hemoglobin concentration (MCHC)                    |    |
| and red cell distribution width (RDW%) in different                 |    |
| experimental groups                                                 | 4  |
| 2. Biochemical assays                                               | )/ |
| 2.1. Levels of C-reactive protein (CRP),                            |    |
| carcinoemberyonic antigen (CEA), and estradiol ( $E_2$ ) in         | ~  |
| different experimental groups                                       | )/ |
| 2.2. Activities of serum arginase, Glotathione-S-                   |    |
| transeferase (GS1) and catalase (CA1) in different                  | 2  |
| experimental groups 11   2.2 Tatal anti-articlent consolity (TAC)   | 3  |
| 2.5. Total antioxidant capacity (TAC), malondialdhyde               |    |
| (NIDA), and nitric oxide (NO) concentrations in different           | 7  |
| experimental groups                                                 | /  |

| 3. Histopathological examination | 122 |
|----------------------------------|-----|
| VI- Summary                      | 127 |
| IX- Conclusion                   | 131 |
| X-Recommendation.                | 132 |
| XI- References                   | 133 |
| Arabic summary                   |     |

## List of abbreviations

| AOM              | : Azoxymethane                                  |
|------------------|-------------------------------------------------|
| APC              | : Antigen presenting cell                       |
| b.wt.            | : Body weight                                   |
| BC               | : Breast cancer                                 |
| BMI              | : Body mass index                               |
| CAT              | : Catalase                                      |
| <b>CD8+T</b>     | : Cytotoxic T cell that cotain CD8 glycoprotein |
| CDNB             | : 1-chloro-2,4-dinitrobenzene                   |
| CEA              | : Carcinoembryonic antigen                      |
| CIS              | : Carcinomas insitu                             |
| COX-2            | : Cyclooxygenase 2                              |
| CRP              | : C-reacive protein                             |
| CTLs             | : Cytotoxic T lymphocytes                       |
| CYP              | : Cytochrome                                    |
| DAMO             | : Diacetylmonoxime                              |
| DCIS             | : Ductral carcinoma insitu                      |
| DEN              | : Diethylnitrosoamine                           |
| DEN              | : Dimethyl nitorosamine                         |
| DHBS             | : 3,5-Dichloro-2- hydroxybenzene sulfonic acid  |
| DHEA             | : Dehydroepiandrosterone                        |
| DMBA             | : 7,12-dimethyl benzanthracene                  |
| DNA              | : Deoxyribonucleic acid                         |
| E <sub>1</sub> S | : Esterone sulfate                              |
| $\mathbf{E_2}$   | : Estradiol                                     |
| EDTA             | : Ethylenediaminetetraacetic acid               |
| eNOS             | : Endothelial NOS                               |
| EpRE             | : Electrophile responsive element               |
| ER               | : Estrogen receptor                             |
| ERα              | : Estrogen receptor α                           |
| ΕRβ              | : Estrogen receptor $\beta$                     |
| ETS              | : Estrogen sulfotransferase                     |
| FSH              | :Follicle-stimulating hormone                   |
| GP <sub>X</sub>  | : Glutathione peroxidase                        |
| GR               | : Glutathione reductase                         |

| GSH         | : Reduced Glutathione                       |
|-------------|---------------------------------------------|
| GST         | : Glutathione-S- transferase                |
| H&E         | : Hematoxylin and eosin                     |
| $H_2O_2$    | : Hydrogen peroxide                         |
| Hb          | : Hemoglobin                                |
| HER2        | : Human epidermal growth factor receptor 2  |
| HRP         | : Horseadish peroxidase                     |
| HRT         | : Hormone replacement therapy               |
| HSDs        | : 17-β-hydroxysteroid dehydrogenase         |
| i.P.        | : Intraperitoneal                           |
| IGF-1       | : Insulin like growth factor-1              |
| IL          | : Interleukin                               |
| ΙΝΓγ        | : Interferon γ                              |
| iNOS        | : Inducible NOS                             |
| LCIS        | : Lobular carcinoma insitu                  |
| LH          | : Luteinizing hormone                       |
| LN          | : Lobular neoplasia                         |
| MCA         | : Methyl chloranthracene                    |
| MCH         | : Mean corpuscular hemoglobin               |
| MCHC        | : Mean corpuscular hemoglobin concentration |
| MCV         | : Mean corpuscular volume                   |
| MDA         | : Malondialdhyde                            |
| MMP         | : Matrix metalloproteinase                  |
| NEDA        | : N-(1-naphthyl)-ethylenediamine            |
| NF-kB       | : Nuclear factor kappa B                    |
| NK cells    | : Natural killer cells                      |
| NMU         | : N –methyl N-nitrosourea                   |
| nNOS        | : Neuronal NOS                              |
| NO          | : Nitric oxide                              |
| NOS         | : Nitric oxide synthase                     |
| NOX         | : NADP oxidase                              |
| NQO-1       | : NADPH quinine oxidoreductase              |
| OD          | : Optical density                           |
| P53         | : Tumor suppressor protein                  |
| <b>p.o.</b> | : Per orally                                |
| PCV         | : Packed cell volume                        |

ii

| PI-9 : Protease inhibitor-9                                          |          |
|----------------------------------------------------------------------|----------|
| PLT : Platlets                                                       |          |
| PR : Progesteron receptor                                            |          |
| <b>RBCs</b> : Red blood cells                                        |          |
| <b>ROS</b> : Reactive oxygen species                                 |          |
| <b>SPSS</b> : Statistical package for social science                 |          |
| <b>STS</b> : Steroid sulfatase                                       |          |
| <b>TAC</b> : Total antioxidant capacity                              |          |
| <b>TBA</b> : Thiobarbituric acid                                     |          |
| <b>TMB</b> : 3,3 <sup>1</sup> ,5,5 <sup>1</sup> tetramethylbenzidine |          |
| <b>TNBC</b> : Triple-negative breast cancer                          |          |
| <b>TNF</b> $\alpha$ : Tumor nicrosis factor $\alpha$                 |          |
| <b>TRAIL</b> : TNF-related apoptosis-inducing ligan                  | d        |
| <b>TPA</b> :12-O-tetradecanoylphorbol-13-acetate                     | <b>)</b> |
| <b>Treg cells</b> : T regulatory cells                               |          |
| <b>VEGF</b> : Vascular endothelial growth factor                     |          |
| <b>WBC</b> : White blood cell                                        |          |
| <b>WHO</b> : World health organization                               |          |
| <b>WR</b> : Working reagents                                         |          |

## List of tables

| Table (1): Composition of the commercial diet              | 39        |
|------------------------------------------------------------|-----------|
| Table (2): Platelet and white blood cell (WBC) counts,     | 61        |
| and the percent of lymphocytes, monocytes and              |           |
| granulocytes in different experimental groups              |           |
| Table (3): Levels of hemoglobin (Hb), mean corpuscular     | <u>68</u> |
| volume (MCV), mean corpuscular hemoglobin (MCH),           |           |
| mean corpuscular hemoglobin concentration (MCHC)           |           |
| and Red cell distribution width (RDW) % in different       |           |
| experimental groups                                        |           |
| Table (4): Concentrations of C-reactive protein (CRP),     | 75        |
| carcinoemberyonic antigen (CEA) and estradiol ( $E_2$ ) in |           |
| different experimental groups                              |           |
| Table (5): Activities of serum arginase, Glutathion-S-     | 81        |
| transeferase (GST) and catalase (CAT) in different         |           |
| experimental groups                                        |           |
| Table (6): Levels of serum total antioxidant capacity      | 87        |
| (TAC), malondialdhyde (MDA), and nitric oxide (NO)         |           |
| in different experimental groups                           |           |

### List of figures

| Figure (1): Carcinogenesis stages                                        | 5  |
|--------------------------------------------------------------------------|----|
| Figure (2): Cancer mortality profile                                     | 8  |
| Figure (3): Chemical structure for NMU and DMBA                          | 22 |
| Figure (4): Chemical structure of the major classes of phytoestrogens    | 25 |
| compared with the structure of estradiol                                 |    |
| Figure (5): Chemical structure of chrysin and apgenin                    | 26 |
| Figure (6): Pathways of estrogen synthesis and catabolism in relation to | 29 |
| sensitivity of tissue to estrogens                                       |    |
| Figure (7): Steroid synthesis in intratumoral stromal and carcinoma      | 30 |
| cells and the potential sites at which flavones and isoflavones may      |    |
| inhibit the production of biologically active estrogens                  |    |
| Figure (8): Summary of potential actions of phytoestrogens               | 34 |
| Figure (9):Percent of change for platelet (PLT) count from negative      | 62 |
| control group                                                            |    |
| Figure (10):Percent of change for white blood cell (WBC) count from      | 62 |
| negative control group                                                   |    |
| Figure (11):Percent of change for lymphocytes percent from negative      | 63 |
| control group                                                            |    |
| Figure (12):Percent of change for monocytes percent from negative        | 63 |
| control group                                                            |    |
| Figure (13):Percent of change for granulocytes percent from negative     | 64 |
| control group                                                            |    |
| Figure (14):Percent of change for hemoglobin level (Hb) from negative    | 69 |
| control group                                                            |    |
| Figure (15):Percent of change for mean corpuscular volume (MCV)          | 69 |
| from negative control group                                              |    |

| Figure (16):Percent of change for mean corpuscular hemoglobin                     | 70 |
|-----------------------------------------------------------------------------------|----|
| (MCH) from negative control group                                                 |    |
| Figure (17):Percent of change for mean corpuscular hemoglobin                     | 70 |
| concentration (MCHC) from negative control group                                  |    |
| Figure (18):Percent of change for red cell distribution width (RDW %)             | 71 |
| from negative control group                                                       |    |
| Figure (19):Percent of change for serum C-reactive protein (CRP) from             | 76 |
| negative control group                                                            |    |
| Figure (20): Percent of change for serum carcinoemberyonic antigen                | 76 |
| (CEA) from negative control group                                                 |    |
| Figure (21):Percent of change for serum estradiol (E <sub>2</sub> ) from negative | 77 |
| control group                                                                     |    |
| Figure (22): Percent of change for serum arginase activity from                   | 82 |
| negative control group                                                            |    |
| Figure (23):Percent of change for serum Glutathion-S-transeferase                 | 82 |
| (GST) activity from negative control group                                        |    |
| Figure (24):Percent of change for serum catalase (CAT) activity from              | 83 |
| negative control group                                                            |    |
| Figure (25):Percent of change for total antioxidant capacity (TAC) from           | 88 |
| negative control group                                                            |    |
| Figure (26):Percent of change for malondialdhyde (MDA) from                       | 88 |
| negative control group                                                            |    |
| Figure (27):Percent of change for nitric oxide (NO) from negative                 | 89 |
| control group                                                                     |    |
| Figures (28& 29): Light micrograph showing the mammary gland of                   | 91 |
| negative control female rats (Group1)                                             |    |
|                                                                                   |    |
|                                                                                   |    |

| Figures (30& 31): Light micrographs of the mammary gland of Group2 | 93 |
|--------------------------------------------------------------------|----|
| rats                                                               |    |
| Figures (32& 33): Light micrographs of the mammary gland of        | 94 |
| Group3 rats                                                        |    |
| Figures (34& 35): Light micrographs of the mammary gland of Group4 | 96 |
| rats                                                               |    |
| Figures (36& 37): Light micrographs of the mammary gland of Group5 | 97 |
| rats                                                               |    |
| Figure (38): Light micrographs of the mammary gland of Group6 rats | 99 |
|                                                                    |    |
| Figure (39): Light micrographs of the mammary gland of Group7 rats | 99 |
|                                                                    |    |