Oxidative Stress and Arsenic Exposure Among Copper Smelters

Thesis

Submitted for Partial Fulfillment of the Requirements for Master Degree in Occupational and Environmental Medicine

By

Heba Tulla Saad Teleb

M.B.,B.Ch., Demonstrator at the Occupational and Environmental Medicine Department Faculty of Medicine, Cairo University

Supervised by

Prof. Dr. Amal M. Kamal El-Safty

Head of Occupational and Environmental Medicine Department Faculty of Medicine, Cairo University

Prof. Dr. Lalia Ahmed Rashed

Professor of Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University

Dr. Aisha Mohamed Samir

Assis. Professor of Occupational and Environmental Medicine Department, Faculty of Medicine, Cairo University

> Faculty of Medicine Cairo University 2014

First and foremost, all greatest gratefulness and deepest appreciation to Allah for his continuous countless blessings

I am very grateful to Prof. Dr. Amal Mohamed Kamal El Safty, head of Occupational and Environmental Medicine Department, Faculty of Medicine, Cairo University. She gave me much of her valuable experiences, advices, constructive criticism and time.

Sincere thanks to Prof. Dr. Laila Ahmed Rashed, Professor of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University for giving me much of her time, effort and support in performing the laboratory investigations of this study.

Special thanks to Dr. Aisha Mohamed Samir, Assisstant Professor of Occupational and Environmental Medicine, Cairo University, who very kindly gave me much of her time, experience, meticulous advice and support that cannot be expressed in words.

Much appreciation for Prof. Dr.Nermin Hamdy Zawilla, Professor of Occupational and Environmental Medicine, Cairo University, for her generous help in collecting the sample of the study and entering the factory where the study was done.

I would like to thank Dr.Rehab Shehata Abdelhady, Assistant lecturer of Occupational and Environmental Medicine, Cairo University, also Dina Mohamed, technician of Occupational and Environmental Medicine Department Lab, Cairo University, for helping me in measuring the heavy metals.

I am grateful to all examined group of this work for their co-operation and their valuable help.

Many thanks for all members of the Occupational and Environmental Medicine Department, Cairo University, for their active support and encouragement.

Finally, I'm greatly indebted to all my family and colleagues for their continuous encouragement and support.

Heba Tulla Saad Teleb

Abstract

Introduction: Copper is widely used in industry. It has been associated with several health hazards among exposed workers.

Aim: The aim of this work is to measure the indicators of oxidative stress as malondialdehyde and superoxide dismutase enzyme activity levels in blood and their association with copper and arsenic levels among secondary copper smelter workers.

Subjective and methods: This study was conducted on forty (40) male workers in a secondary copper smelting factory, who were occupationally exposed to copper. They were compared to forty (40) male non-exposed individuals. Full history was taken, clinical examinations were done. Laboratory investigations in the form of: CBC, serum copper, serum arsenic, urinary arsenic, malondialdehyde and superoxide dismutase blood levels were measured. Environmental measurements of copper and arsenic dusts and fumes were carried out at selected different workplaces.

Results: Environmental measurements in the workplace were within the normal permissible limits in Egypt. Statistically significant (p<0.05) differences were found between exposed and control as regards the prevalence of the respiratory and neurological symptoms. Compared to the control group, serum copper, serum arsenic, urinary arsenic and blood malondialdehyde level (Cu=148.4±15.6, serum As=2.6±1.2, urinary As=38.7±14.2, MDA=5.6±1.9) were significantly increased among exposed worker. Superoxide dismutase activities in blood (185.5±19.8) were significantly decreased and negatively correlated with duration of the employment (r=-0.750; p<0.001). Also malondialdehyde in blood were significantly increased and positively correlated with the duration of employment (r=0.830; p<0.001).

Conclusion: The oxidative stress biomarker as malondialdehyde (MDA) was significantly increased with exposure to copper dusts and fumes. It was positively related to copper and arsenic levels. While superoxide dismutase enzyme activity was significantly reduced, and it was negatively related to copper and arsenic levels. The disruption of hemostasis induced by oxidative stress may promote the development of health hazards with continued occupational exposure to copper fumes.

Recommendation: from the present study we recommend :Pre-employment and Periodic medical examination for smelters workers including clinical examination and laboratory investigations as measuring serum copper, urinary arsenic, serum arsenic. Malondialdehyde and superoxide dismutase blood levels can be used as indicators of oxidative stress among exposed workers.

Key words: Copper smelters, Arsenic, Malondialdehyde (MDA), Superoxide dismutase (SOD).

Contents

	Page
List of Tables	Ι
List of Figures	III
List of Abbreviation	V
Abstract	
Introduction & Aim of Work	1
Review of Literature	
Chapter (I):	4
Copper smelting and refining process	•
Chapter (II):	16
Copper	10
Chapter (III):	
Arsenic	25
Chapter (IV):	
Oxidative stress	
Subjects & Methods	69
Results	84
Discussion	106
Conclusion & Recommendations	
Summary	
References	
Appendix	155
Arabic Summary	
Arabic Abstract	

List of Tables

Tables		Pages
(A)	A list of some key copper-containing enzymes and their functions.	17
(1-a)	Air levels of copper and arsenic at different work places.84	
(1-b)	International and Egyptian maximum allowable air levels for copper and arsenic at work place.	
2	Demographic characteristics of the studied groups.	86
3	Usage of personal protective equipment (PPE) among exposed workers.	87
4	The prevalence of general manifestations among the studied groups	88
5	Complete blood picture findings among studied groups.	89
6	Serum copper, arsenic, urinary arsenic, serum superoxide dismutase (SOD) and malondialdyde (MDA) blood levels among studied groups.	90
7	Serum copper, serum arsenic, urinary arsenic, superoxide dismutase and malondialdhyde blood levels among smokers of exposed and controls group.	91
8	Serum copper, serum arsenic, urinary arsenic, superoxide dismutase and malondialdhyde blood levels among nonsmokers of exposed and control groups.	92
9	Level of serum copper, serum arsenic, urinary arsenic, superoxide dismutase and malondialdhyde blood levels according to smoking habit in the exposed group.	93
10	10Level of serum copper, serum arsenic, urinary arsenic, superoxide dismutase and malondialdhyde blood levels according to smoking habit in the control group.	
11	Correlation coefficient between smoking index and each of serum copper, serum arsenic, urinary arsenic, superoxide dismutase and malondialdhyde blood levels among exposed group.	95
12	Correlation coefficient between duration of employment and each of serum copper, serum arsenic, urinary arsenic, superoxide dismutase	97

	and malondialdhyde blood levels among exposed group.	
13	Correlation coefficient between age and each of serum copper, serum arsenic, urinary arsenic, superoxide dismutase and malondialdhyde blood levels among exposed group.	99
14	Correlation coefficient between SOD and each of serum copper, serum arsenic and urianry arsenic among exposed group.	101
15	Correlation coefficient between MDA and each of serum copper, serum arsenic and urinary arsenic among exposed group.	103
16	Multivariate regression analysis to identify predictor for urinary arsenic and MDA levels among exposed workers.	105

List of Figures

Figures		Pages
Α	Extractive metallurgy of copper.	6
В	Typical primary copper smelter process.	8
С	This diagram shows secondary smelting process.	11
D	Pathways of metal-induced oxidative stress.	54
E	Smelting furnace 1.	71
F	Smelting furnace 2.	71
G	Zinc alloy.	71
Н	Site of removal of slag.	72
Ι	Slag.	72
J	Treatment furnace.	72
K	Covered channels for forming copper molds.	73
L	Circulating water system.	73
Μ	Cutting machine by electrical saw.	73
N	Molds of copper	74
0	Punching machine.	74
Р	Welding part.	74
1	Relation between smoking index and serum copper.	95
2	Relation between smoking index and serum arsenic.	96
3	Relation between smoking index and urinary arsenic.	96
4	Relation between smoking index and malondialdhyde.	96
5	Relation between duration of exposure and serum arsenic.	97
6	Relation between duration of exposure and urinary arsenic.	98
7	Relation between duration of exposure and superoxide dismutase.	98
8	Relation between duration of exposure and malondialdehyde.	98
9	Relation between age and urinary arsenic.	100
10	Relation between age and superoxide dismutase.	100
11	Relation between age and malondialdehyde.	100

12	Relation between superoxide dismutase and serum copper.	101
13	Relation between superoxide dismutase and serum arsenic.	102
14	Relation between superoxide dismutase and urinary arsenic.	102
15	Relation between malondialdehyde and serum copper.	103
16	Relation between malondialdehyde and serum arsenic.	104
17	Relation between malondialdehyde and urinary arsenic.	104

List of Abbreviations

ACGIH:	American Conference of Governmental Industrial Hygienists
AP-1:	Activator protein-1
AsV:	Arsenate
AsIII:	Arsenite
AsH ₃ :	Arsine gas
As-GSH:	arsenic-glutathion complexes
As ⁺³ MT:	Arsenic (+3 oxidation state) methyltransferase
As ₂ S ₃ :	Orpimen
As ₄ S ₄ :	Realgar
ATG:	Arsenic triglutathione
ATRA:	All-trans retinoic acid
BFD:	Black foot disease
BER:	Base excision repair
CAT:	Catalase
CAT:	Chronic arsenic toxicity
cc:	cubic centimeters
CCI ₃ :	Carbon-centered free radical
Cd:	Cadmium
(CH ₃) ₂ As•:	dimethylarsinic radical
(CH ₃) ₂ AsOO• :	dimethylarsinic peroxyl radicals
CICH=CHAsCl ₂ :	Lewisite (2-chlorovinyl-dichloroarsine)
Cu:	Copper
Cu-ZnSOD:	Copper-Zinc superoxide dismutase
Cu ⁺¹ :	Cuprous

Cu ⁺² :	Cupric
DMA:	Dimethylarsenate,
DMAIII:	Dimethylarsonic acid
DMAV:	Dimethylarsinic acid
DMAG:	Dimethylarsinic glutathione
DMDTAV:	Dimethyldithioarsinic acid
DMMTAV:	Dimethylthioarsinic acid
DMSA:	Dimercaptosuccinic acid
EC-SOD:	Extracellular superoxide dismutase
EPA:	Environmental Protection Agency
EW:	Electro wining
FDA:	Food and Drug Administration
Fe:	Iron
FeSiO ₃ :	Ferrous silicate
FEV1:	forced expiratory volume measured in 1 sec
FVC:	forced vital capacity
GSH:	Reduced glutathione
GPx:	Glutathione peroxidase
GR:	Glutathione reductase
GSSG:	Oxidized glutathione
GSTO1-1:	Glutathione S-transferase omega 1-1
hCtr1	The human homologue copper-transport protein1
hCtr2:	The human homologue copper-transport protein2
Hg:	Mercury
HNE:	4-Hydroxinonenal
HNO ₂ :	Nitrous acid

H ₂ O ₂ :	Hydrogen peroxide
HOCI:	Hypochlorous acid
HSA:	Human serum albumin
IARC:	International Agency for Research on Cancer
KCI:	Kerman copper industries
L00•:	Lipid peroxyl
MADG:	Monomethylarsonic diglutathione
MDA:	Malondialdehyde
MMA:	Monomethylarsenate
MMAIII:	Monomethylarsonous acid
MMAV:	Monomethylarsinic acid
MMA reductase:	Monomethylarsenate reductase
MNK:	Menkes protein
Mn:	Manganese
Mn-SOD:	Manganese superoxide dismutase
MTHFR:	Methylenetetrahydrofolate reductase
NAC:	N-acetyl-L-cysteine
NADPH:	N-acetyl diphosphate hydrogenase
NaPi-IIb:	Sodium-coupled phosphate transporter
NER:	Nucleotide excision repair
NF kappaB:	Nuclear factor-kappaB
NIEHS:	National Institute of Environmental Health Sciences Sciences
Ni:	Nickel
Ni-SOD:	Nickel superoxide dismutase
NO [•] :	Nitric oxide
NO ₂ :	Nitrogen dioxide

O2 :	Superoxide
¹ O ₂ :	singlet oxygen
O ₃ :	Ozone
'ОН:	Hydroxyl
ONOO ⁻ :	Peroxynitrite
OS:	Oxidative stress
OSHA:	Organization of Safety and Health Administration
PAM:	Peptidylglycine alpha-amidating mono-oxygenase
PET:	Poistron Emision Tomography
Pb:	Lead
PLS:	Pregnant leach solution
ROO':	Peroxyl radical
ppm:	parts per million
PUFA:	polyunsaturated fatty acids
RDAs:	Recommended dietary allowances
RH:	Activated methylene
RNS:	Reactive nitrogen species
ROO':	Peroxyl
ROOH:	Lipid hydroperoxide
ROS:	Radical oxygen species
NRC:	National Research Council
SAH:	S-adenosyl-homocysteine
SAM:	S-adenosyl-methionine
SO ₂ :	Sulphur dioxide
SOD:	Superoxide dismutase
SP1:	Specificity protein1

SX:	Solvent extraction
TMAIII:	Trimethylarsine
TMAOV:	Trimethylarsine oxide
TPM:	Total particulate matter
TWA:	Time-weighted average
WND:	Wilson protein
Zn:	Zinc

Introduction

X

Mining and smelting of heavy metals can be traced back thousands of years ago. However, production has grown rapidly since the industrial evolution (*Pacyna*, 1986).

The discovery of copper dates from prehistoric times. It is said to have been mined for more than 5000 years. It is one of man's most important metals. Copper occasionally occurs native (elemental copper) in ores and minerals. The most important copper ores are the sulfides, oxides and carbonates. From these, copper is obtained by smelting, leaching, and electrolysis (*Lide, 2012*).

Um Bogma area is the most famous mineralized area in Sinai, Egypt. It is characterized by the presence of manganese, iron, and copper deposits. There are many hazardous elements such as iron, copper, manganese, lead, and zinc as well as others associating heavy metals such as arsenic, selenium, and sulfur which are dispersed in the environment (*Khalifa and Arnous, 2012*).

Emissions from copper smelter are principally particulate matter and sulfur oxides. Copper and iron oxides are the primary constituents of particulate matter but other oxides such as arsenic, antimony, cadmium, lead, mercury and zinc may be also present along with metallic sulfates and sulfuric acid mist *(Tasić et al., 2010)*. As the most common emissions are copper and arsenic, that is why we measured these metals.

Copper can induce oxidative stress by two mechanisms. Firstly, it can directly catalyze the formation of radical oxygen species (ROS) via a fenton-like reaction. Secondly, exposure to elevated levels of copper significantly decreases glutathione levels through binding to its thiol group (*Speisky et al., 2009*).

Chronic exposure to inorganic arsenic involves a biotransformation process that led to the main excretion of organic methylated metabolites, such as monomethylarsinic acid (MMA) and dimethylarsinic acid (DMA), as well as the parental inorganic species (*Marcos et al., 2006*).

At the molecular level, physio-pathological effects related to arsenic toxicity appear to involve different mechanisms and intracellular targets. Oxidative stress is

Introduction & Aim of the work.

among the most documented mechanisms of arsenic toxicity and carcinogenicity. It is the result of an imbalance between radical oxygen species (ROS) production and the antioxidant defense system e.g. superoxide dismutase (SOD) and vitamin E (*De Vizcaya-Ruiz et al., 2009*).

Radical oxygen species (ROS) production by arsenic may result in an attack, not only against antioxidant defenses and DNA, but also against membrane phospholipids, which are very sensitive to oxidation, producing peroxyl radicals and then malondialdehyde (MDA) (*Shi et al., 2004*).

Gentry et al. (2010) highlighted the role of inhibition of DNA repair by arsenic as a mode of action for its carcinogenic effect. They analyzed data on in vitro cellular and in vivo gene expression changes following exposure to inorganic arsenic. The analysis of the data suggests the key events in carcinogenicity of arsenic include inhibition of DNA repair under conditions of oxidative stress, inflammation, and proliferative signaling. This may lead to a condition in which mitosis proceeds without maintaining the integrity of the cellular DNA.

Numerous studies showed increased incidence of lung, skin, and bladder cancer due to high exposure to arsenic (*Ferreccio et al., 2006; Kapaj et al., 2006; Kligermanand et al., 2007; Hlubin et al., 2008*).

In regard to toxicity, the International Agency for Research on Cancer (IARC) defines arsenic as a group I known human carcinogen that also induces a wide array of other noncancer effects, leaving essentially no bodily system free from potential harm (*IARC*, 2012).