Flow Cytometric Assessment of CD30 Expression in Adult Patients with Acute Leukemia

Thesis

Submitted for partial fulfillment of Master Degree in Clinical Hematology

Presented by

Kouthar Ali almuawi

M.B., B. Ch

Sabratha Oncology Center - Libya

by

Prof. Dr. Amal Mostafa Mohamed Elafifi

Professor of Internal Medicin Clinical Hematology and Bone Marrow Transplant

Faculty of Medicine, Ain Shams University

Dr. Haitham Mohamed Mohamed Abdelbary

Lecturer of Internal Medicine and Clinical Hematology Faculty of Medicine, Ain Shams University

Dr. Rasha Magdy Mohammed Said

Lecturer of Internal Medicin and Clinical Hematology Faculty of Medicine, Ain Shams University

Dr. Rasha Abd El-Rahman El-Gamal

Assistant Professor of Clinical Pathology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2018

في المرضى البالغين المصابين CD30 تقييم التدفق الخلوي في تعبير بسرطان الدم الحاد

رسالة

توطئة للحصول علي درجة المجاستير في أمراض الدم الإكلينيكية مقدمة من

> **كوثر علي المعاوي/الطبيبة** بكالوريوس الطب والجراحة مركز صبراته للأورام - ليبيا

> > تحت إشراف

أد/ أمل مصطفى محمد العفيفي

أستاذ طب الباطني وأمراض الدم الإكلينيكية وزرع نخاع العظم كلية الطب- جامعة عين شمس

د/ هيثم محمد محمد عبد الباري

مدرس الطب الباطني وأمراض الدم الإكلينيكية كلية الطب- جامعة عين شمس

د/ رشا مجدي محمد سعيد

مدرس الطب الباطني وأمراض الدم الإكلينيكية كلية الطب- جامعة عين شمس

د/ رشا عبد الرحمن الجمل

أستاذ مساعد الباثولوجيا الإكلينيكية كلية الطب- جامعة عين شمس كلية الطب جامعة عين شمس ٢٠١٨

سورة البقرة الآية: ٣٢

First of all, I would like to thank **ALLAH** the source of all knowledge and wisdom. From him we owe all that we have and all that we are.

I would like to express my great appreciation to **Prof. Dr. Amal Mostafa Mohamed Elafifi,** Professor of Internal Medicin Clinical Hematology and Bone Marrow Transplant, Ain Shams University, who give me the honor to work under her supervision with encouragement through this work.

I would like to express my sincere gratitude to **Dr. Haitham Mohamed Mohamed Abdelbary,** Lecturer of Internal Medicine and Clinical Hematology, Ain Shams University, for his valuable suggestions and assistance in this study. I am indebted to him for his expert and sincere guidance and encouragement.

I am grateful to **Dr. Rasha Magdy Mohammed Said**, Lecturer of Internal Medicin and Clinical Hematology, Ain Shams University, for her unceasing help ,support and her encouragement to accomplish this study.

I am grateful to **Dr. Rasha Abd El-Rahman El-Gamal**, Assistant Professor of Clinical Pathology, Ain Shams University, for her unceasing help ,support and her encouragement to accomplish this study.

Last but not least, I would like to thank my family and colleagues who supported me, helped me with their suggestions and ideas, and made this work possible.

Contents

Subjects	Page
List of Abbreviations	I
• List of table	V
List of Figures	VIII
• Introduction	1
Aim of the Work	
Review of literature:	
Chapter 1: Acute Myloid Leukemia	4
Chapter 2: Acute Lymphoblastic Leukemia	25
Chapter 3: CD30	47
Patients and Methods	56
Results	65
• Discussion	
• Summary	110
Conclusion	114
Recommendations	115
References	116
Arabic Summary	

List of Abbreviations

ALCL	Anaplastic lage cell lymphoma
ALL	Acute lymphoblastic leukemia
Allo HSCT	Allogenic hematopoietic stem cell transplant
AML	Acute myloid leukemia
ANOVA	analysis of variance
APL	Acute promylocytic leukemia
APTT	Activated partial thromboplastin time
АТО	Arsenic trioxide
АТР	Adenosine triphosphate
ATRA	All trans retinoic acid
B- ALL	B- cell acute lymphoblastic leukemia
BCR-ABL1	Breakepoint cluster region – Abelson 1
BM	Bone marrow
B-NHL	B- cell non Hodgkins lymphoma
BUN	Blood urea nitrogen
CD30	Cluster differentiation 30
CD30L	Cluster differentiation 30 ligand
CD30v	Cluster differentiation 30 varient
CEBPA	CCAAT/enhancer -binding protein
CHR	Complete hematological response
c-KIT	Tyrosin kinase kit
CN-AML	Cytogenetic normal acute myloid leukemia
CNS	central nervous system
CR	Complete remession
CR1	First complete remession
CRLF2	Cytokine receptor-like factor 2
CSF	Cerebrospinal fluid
CSI	Craniospinal irridation

DFS	Disease free survival
DI	Direct
DLBCL NOS	Diffuse large B cell lymphoma not otherwise specifide
DS	Differentiation syndrome
DVT	Deep venous thrombosis
EDTA	Ethylenediamine tetraacetic acid
EF	Ejection fraction
EPOR	Erythropoietin receptor
ERK1	Extracellular signal –regulated kinase 1
ESR	Erythrocyte sedimentation rate
ЕТР	Early T-precursor
FAB	French-American-British
FDA	Food and Drug Administration
FISH	Fluorescence in situ hybridization
FLT3	Fms-like tyrosine kinase 3
GOT	Glutamate oxaloacetate transferase
GPT	Glutamate pyruvate transferase
GVHD	Graft versus host disease
Н&Е	Hematoxylin and eosine
НВ	hemoglobin
НСТ	Hemtopoietic cell transplant
HD	Hodgkins disease
HIV	Human immune deficiency viruse
HLADR	Human leukocyte antigen
HOX	Homeobox
HSCT	Hematopiotic stem cell transplant
IL-4R	Interleukin -4 receptor
INR	International normalizing ratio
IQR	Interquartile range

ITD	Internal tandem mutation
JAK	Janus kinase
KDs	killodaltons
LDH	Lactate dehydrogenase
LFT	Liver function test
LV	Left ventricle
MAP	Mitogen activated pathway
МАРК	Mitogen-activated protein kinas
MLL	Mixed lineage leukemia
MPO	Myeloperoxidase
MRD	Minimal residual disease
MRI	Magnetic resonance imaging
N:C	nuclear to cytoplasmic
NF	Nuclear factor
NPM1	Nucleophosmin
NSE	Non spesfic esterase
OS	Overall survival
PAS	Periodic acid-Schiff
PE	Pulmonary embolism
Ph+	Philadelphia positive
PLT	Platelet
PML/RARa	Promylocytic leukemia/ retinoic acid receptor
PTD	Partial tandem duplication
qRT-PCR	Quantitative revese transcriptase –polymerase chain reaction
RA	Retinoic acid
RARs	Retinoic acid receptors
RFT	Renal function test
RTK	Receptor tyrosine kinase
RUNX1	Runt –related transcription factor 1

RXRs	Retinoic X receptors
SBB	Sudan black B
sCD30	Serum cluster differentiation 30
SCT	Stem cell transplantation
SD	Standard deviation
SPSS	Statistical package for social sciences
T- ALL	T- cell acute lymphoblastic leukemia
Т са	Total calcium
TBI	Total body irradiation
TCR	T cell receptor
Th	T helper cell
TKI	Tyrosin kinase inhibitor
TNFRSF	Tumour necrosis factor superfamily
T-NHL	T cell non Hodgkins lymphoma
TRADD	Tumour necrosis factor receptor associated death domain
TRAF	Tumour necrosis factors associated family
WBC	White blood count
WHO	World health

∉List of Tables

Tab. No.	Subject	Page
	WHO classification of AML	8
	FAB classification of AML	9
	Immunophenotype of AML	13
Table (4)	AML cytogenetic	14
Table (5)	FAB classification for ALL	27
Table (6)	WHO Classification of ALL	28
Table (7)	Mature B-cell ALL	33
Table (8)	Immunologic marker of T-ALL	35
Table (9)	Prgnostic factors in ALL	46
Table (10)	The number and percentage of different sexes and ages of AML and ALL patients included in the study	67
Table (11)	The number and percentage of negative and positive clinical signs of AML and ALL patients included in the study	68
Table (12)	The number and percentage of positive and negative results of chronic diseases in both AML and ALL patients	68
Table (13)	The number and percentage of negative and positive results of HSM imaging and adenopathy imaging of patients included in the study	69
Table (14)	The number and percentage of negative and positive results of testicular infiltration and CSF infiltration of patients included in the study	69
Table (15)	Comparison between AML and ALL in laboratory findings	70
Table (16)	Comparison between new AML and relapsed cases as regards ejection fraction % by echocardiography	72
Table (17)	Comparison between new ALL and relapsed cases as regards ejection fraction % by echocardiography	73
Table (18)	Comparison between new and relapsed cases of AML patients as regards immunophenotyping pattern using	74
Table (19)	Comparison between new and relapsed cases of ALL patients in the study as regards immunophenotyping pattern	74
Table (20)	Comparison between new and relapsed cases of AML patients in the study as regards Fluorescence in situ hybridization cytogenetics (FISH) and karyotyping	75

List of Tables

∉List of Tables

Tab. No.	Subject	Page	
	Comparison between new and relapsed cases of ALL	0	
Table (21)	patients in the study as regards Fluorescences in situ		
	hybridization cytogenetics (FISH) and karyotyping using		
Table (22)	Number and percentages of different induction protocols	76	
1 abit (22)	of AML new cases	70	
Table (23)	Number and percentages of different induction protocols	76	
	of ALL new cases		
	Comparison between new AML and relapsed cases as	77	
Table (24)	regards bone marrow blast% before and after induction	77	
	chemotherapy		
Tabla (25)	Comparison between new ALL and relapsed cases as regards bone marrow blast% before and after	77	
1 able (23)	chemotherapy	11	
	Number and percentages of response following induction		
Table (26)	chemotherapy in AML cases	78	
	Number and percentages of response following induction	70	
Table (27)	chemotherapy in ALL cases	78	
Table (28)	Reinduction chemotherapy protocols used in	79	
Table (28)	relapsed/resistant AML cases	19	
Table (29)	Reinduction chemotherapy protocols used in	79	
	relapsed/resistant ALL cases	17	
	Comparison between new AML and relapsed cases as		
Table (30)	regards monitoring minimal residual disease (MRD %)	80	
	post induction chemotherapy		
Table (21)	Comparison between new ALL and relapsed cases as regards monitoring minimal residual disease (MRD %)	80	
1 able (31)	post induction chemotherapy	80	
	Comparison between new and relapsed cases of		
Table (32)	AML patients as regards mortality rate using	81	
Table (33)	Comparison between new and relapsed cases of	81	
	ALL patients as regards mortality rate		
Table (34)	Comparison between AML and ALL patients as	82	
		02	
Table (25)	Number and percentage of CD30 expression in whole south lawkomia patients	83	
1 able (33)	whole acute leukemia patients	03	
	Comparison between New AML and Relapsed		
Table (36)	cases as regard CD30 expression	84	
- (- •)	<i>o r r</i>		

∉List of Tables

Tab. No.	Subject	Page
Table (37)	Comparison between new ALL and relapsed cases as CD30 expression	85
Table (38)	Comparison between relapsed AML and relapsed ALL patients as regards CD30 expression	86
Table (39)	Comparison between new AML and new ALL patients as regards CD30 expression	87
1 9 DIA (40)	comparison between AML and ALL patients as regards CD30 expression cutoff 20%	88
	comparison between different Imunophenotypic pattern as regarde CD30 expression in all acute leukemia cases	89
Table (42)	comparison between subgroups of AML as regarde CD30 expression either new or relapsed cases	90
Table (43)	Comparison between subgroups of ALL and CD30 expression either new or relapsed cases	91
	comparison between positive and negative cases of different radiological investigations of tissue infiltration and CD30 expression in whole group	92
Table (45)	Comparison between Cytogenetic FISH pattern as regarde CD30 expression in whole patients.	93
	Correlation between monitoring minimal residual disease (MRD %) and CD30 at the cutoff value >20 % in both AML and ALL cases	94
Table (47)	Correlation between risk parameters and CD30 expression in ALL patients	95
Table (48)	Correlation between risk parameters and CD30 expression in AML patients	95
Table (49)	ROC curve in leukemia cases	96
Table (50)	shows Kaplan–Meier estimator of the correlation between CD30 and overall survival of the included patients	97

List	of	Figures
------	----	---------

Fig. No.	Subject	Page
Fig. (1)	Bone marrow smears in AML	12
	Morphologic features of acute myeloid leukemia with	13
Fig. (2)	recurrent cytogenetic abnormalities	
Fig. (3)	Chromosomal translocations in APL	18
Fig. (4)	Common morphological variant of all	27
	Typical morphology of Burkitt leukemia by (H&E) stain	34
Fig. (5)	And Characteristic immunophenotype is illustrated by	
	flow cytometric	
Fig. (6)	CD30 signals through TRAFs	50
Fig. (7)	CD30 stimulation	52
Fig. (8)	positive and negative CD30 expression	62
Fig. (9)	shows the number and percentage of sexes and ages of	67
rig. ()	AML and ALL patients included in the study	
	The number and percentage of negative and positive	69
Fig. (10)	results of testicular infiltration and CSF infiltration of	
	patients included in the study	
Fig. (11)	Comparison between new AML and relapsed cases as	72
11 <u>6</u> . (11)	regards ejection fraction % by echocardiography	
Fig. (12)	Comparison between new ALL and relapsed cases as	73
	regards ejection fraction % by echocardiography	
Fig. (13)	Comparison between AML and ALL patients as regards	82
	CD30 expression	
Fig. (14)	Number and percentage of CD 30 expression at cutoff	83
	(>20%) and (<20%)	
Fig. (15)	Comparison between new AML and relapsed cases as	84
8. ()	regard CD30 expression	0.7
Fig. (16)	Comparison between new ALL and relapsed	85
11 <u>6</u> . (10)	cases as regards CD30 expression	
	Comparison between relapsed AML patients and	86
Fig. (17)	relapsed ALL cases as regards CD30 expression	
	Comparison between AML and ALL patients as regards	88
Fig. (18)	CD30 expression cutoff 20%	
	comparison between different Imunophenotypic pattern	89
Fig. (19)	as regarde CD30 expression in all cases	
	Comparison between new and relapsed ALL as regarde	91
Fig. (20)	CD30 expression showing high significant level in	
	relapsed T ALL	

🖉 List of Figures

Fig. No.	Subject	Page
Fig. (21)	Comparison between FISH cytogenetic pattern as	93
Fig. (21)	regarde CD30 expression	
Fig. (22)	ROC curve in leukemia cases	96
	Kaplan–Meier estimator of the correlation between CD30	97
	and overall survival of the included patients	97

Z Abstract

Abstract

Background:: CD30, a member of (TNFR) superfamily, was originally identified as a cell-surface marker of Reed-Sternberg cell in classical Hodgkin Lymphoma, CD30 is also expressed by Several types of T- and B- cell non-Hodgkin's Lymphoma, such as anaplastic large cell lymphoma (ALCL), primary mediastinal large B- cell lymphoma (PMBCL) and Epstein-Barr-Virus (EBV)- driven clonal lymphoproliferative disorder as well as in reactive conditions such as infectious mononucleosis. Patients and methods: A cross-sectional study that was conducted at Clinical Hematology Department in Ain Shams University Hospital during a period from Novomber 2016 to August 2017. 20 new cases of AML and ALL ,30 refractory / or relapsed cases of AML and ALL either T or B, enrolled in this study , CD30 % expression was assessed by flowcytometery on bone marrow sample or peripheral blood. **Results:** CD30 with cutoff >20% (+ve) was 46% of cases while cases with cutoff <20%(-ve) was 54% in all leukemia cases, CD30 expresssion was higher in ALL especially In T-ALL with mean value (44.564±27.158) with significant increase relapsed T-ALL (**P** value 0.031) followed bv **B-ALL** (23.988±15.678). CD30 expression in relapsed AML and ALL showed an increased % but not yet statistically significant. Significant correlation was found in risk parameters as in WBCs (>100,000),PLT (<30,000) and CD30 expression in T ALL patients with P value 0.038and 0.021 respectively, and non significant between LDH and MRD in T-ALL and all risk parameters in B-ALL. ROC curve revealed that the accuracy of sensitivity and specificity was 69.9%. Conclusion: CD30 has been shown to be a significant diagnostic tool in cases of acute leukemia especially in newly and relapsed TALL, also it can be labeled to be targeted therapy, Drug trial using monoclonal AB to CD30 as treatment in relapsed /refractory cases with special concern to response and survival rate

Key word: MRD (minimal residual disease) tumour necrosis factor receptor(TNFR), anaplastic large cell lymphoma (ALCL), primary mediastinal large B- cell lymphoma (PMBCL) and Epstein-Barr-Virus (EBV)-