Improvement and Development of Some Biomaterials by Ionizing Radiation for Possible Practical Uses

THESIS

Submitted in the Partial Fulfillment for the Requirement of Ph.D. Degree in Biochemistry

By

Salah Lotfy Ahmed Khalil Saad

(B.Sc.1989 - M.Sc. 2000) National Center for Radiation Research and Technology Atomic Energy Authority

SUPERVISED BY

Prof. Dr. Nadia M. Abdallah Prof. Dr. El-Sayed A. Hegazy

Prof. of Biochemistry Biochemistry Department Ain Shams University

Prof. of Radiation Chemistry Head of National Center for Radiation Research and Technology Atomic Energy Authority.

Ass. Prof. Gilane M. Sabry

Ass. Prof. of Biochemistry Biochemistry Department Ain Shams University

Ass. Prof. Hanaa K. Mohamed

Ass. Prof. of Radiation Chemistry Polymer Chemistry Department Atomic Energy Authority

Faculty of Science Ain Shams University 2006

No word can express my gratitude toward my

mother

Special gratitude to my wife

my Son & daughter

I declare that this thesis has been composed by myself and that the work of which it is a record has been done myself.

It has not been submitted for a degree at this or any other university.

Salah Lotfy Ahmed

Contents

	Page
Abstract	I
Acknowledgement	II
List of Abbreviations	IV
List of Figures	V
List of Tables	Х
List of Photos	XII
List of Diagrams	XIII
Aim of the work	XV

CHAPTER I INRORUDCTION

I.1.1	Starch structure	1
I.1.2	Starch hydrolysis products	4
I.1.3.	Radiation regulation of molecular weight of	
	natural polymer	5
I.1.4.	Intrinsic viscosity and molecular weight	6
I.1.5.	Rheological properties of the starch	8
I.1.6.	Application of ultrasound on polymer	9
I.2.1	Radiation grafting technology	11
I.2.2.	Radiation-induced graft copolymerization	12
I.2.3.	Methods of radiation-induced graft	
	polymerization	13
I.2.3.1.	Simultaneous irradiation method	13
I.2.3.2.	Pre-irradiation method	15
I.2.4	The development of polypropylene grafted	
	fibers	17
I.3.1.	Enzyme immobilization	18
I.3.2.	Glucoamylase	19

CHAPTER II REVIEW OF LITERATURE

II.1.1.	Review articles of natural polymers	Page 22
II.1.2.	Polysaccharides degradation	24
II.1.3.	Starch degradation	26
II.1.3.1.	Ionizing radiation degradation of starch	27
II.1.3.2.	Non-ionizing radiation starch degradation	33
II.2.	Radiation-induced graft polymerization	40
II.2.1.	Review articles of graft polymerization	40
II.2.2	Acrylic acid monomer	45
II.2.3.	Acrylamide monomer	55
II.3.	Enzyme immobilization	65
II.3.1	Review articles of enzyme immobilization	65
II.3.2.	Starch degradation enzymes	67
II.3.3.	Glucoamylase immobilization	73
	-	

CHAPTER III Materials & Methods

Materials	80
Apparatus	80
Radiation sources	80
Irradiation chamber	80
Irradiation Unit BK-10000	81
Electrons accelerator	81
Ultrasound reactor	81
Methods	82
Starch irradiation	82
Gamma irradiation	82
	Apparatus

		Page
III.3.1.2.	Electron beam irradiation	82
III.3.2.	Starch solution preparation	82
III.3.3.	Intrinsic viscosity	83
III.3.4.	Viscosity measurements	83
III.3.5.	Static light scattering	84
III.3.6.	Graft Copolymerization	84
III.3.6.1	Post irradiation grafting method	84
III.3.6.2	Swelling measurements	85
III.3.7.	Thermal Analysis	85
III.3.7.1	Thermal Gravimetric Analysis (TGA)	85
III.3.7.2	Differential Scanning Calorimetery (DSC)	86
III.3.8.	X-Ray Diffraction Measurements	86
III.3.9.	pH measurement	86
III.3.10.	FTIR measurement	86
III.3.11.	Spectrophotometric measurement	87
III.3.12.	Microscopic observation	87
III.4.	Analytical techniques	87
III.4.1.	Determination of polysaccharide concentration	87
III.4.2.	Determination of glucoamylase activity	88
I III.4.3.	Determination of glucose concentration	89
III.4.4.	Determination of protein concentration	90
III.4.5.	Immobilization of Glucoamylase onto PP-g-	
	AAc and PP-g-AAm fibers	91
III.4.6.	Determination of Immobilization Efficiency	93
III.4.7.	Determination of Km and Vmax values	94

CHAPTER IV RESULTS AND DISSCUSSION

Section A	Investigation of	f the corn starch degradation	95

		Page
IV.1.	Polyscchrieds degradation	95
IV.1.1.	Degradation of starch by ionizing radiation	95
IV.1.1.1	Effect of physical form of starch on its	
	degradation	95
IV.1.1.2	Effect of ionizing radiation on starch	99
W 1 1 2 1	degradation	106
IV.1.1.3.1	Influence of gas on the molecular weight of starch.	106
IV.1.1.3.2	Influence of gas on the radius of gyration of	108
1 • .1.1.3.2	starch	100
IV.1.1.4.	Characterization of degradable corn starch	113
IV.1.1.4.1.	Determination of change in viscosity-average	113
	molecular weight	
IV.1.1.4.2.	Zimm plot of native corn starch	115
IV.1.1.4.3	Determination weight average molar weight	117
IV.1.1.4.4.	Effect of radiation on radius of gyration	119
IV.1.4.5.	FTIR of irradiated corn starch	119
IV.1.1.4.6.	SEM observation of starch granule	122
IV.1.2.	Degradation of starch by 360-kHz ultrasound	125
IV.1.2.1	Effect of ultrasound on the intrinsic viscosity of	
	corn starch	125
IV.1.2.2	Effect of ultrasound on the weight average	
	molar weight	126
IV.1.2.3.	Effect of radiation on radius of gyration	129
Section B	The preparation of radiation grafted polymer	101
	for enzyme immobilization	131
IV.2.	Radiation induced graft copolymerization	131
IV.2.2.1.	Effect of inorganic salt	131
IV.2.2.2.	Effect of acid	134
IV.2.2.3.	Effect of monomer concentration	136

.

		Page
IV.2.2.4.	Effect of reaction time	139
IV.2.2.5.	Effect of Preirradiation dose	139
IV.2.2.6.	Influence of storage time	141
IV.2.3.	Characterization of the prepared grafted fibers	144
IV.2.3.1.	Thermal Properties of the grafted fibers	144
IV.2.3.2.	Thermogravimetric Analysis (TGA)	144
IV.2.3.3.	Differential Scanning Calorimetry (DSC)	160
IV.2.3.3.1.	Change in Tm and Δ Hm	162
IV.2.3.4.	X- Ray Diffraction (XRD)	170
IV.2.3.5.	Swelling behavior	179
IV.2.3.6.	Scanning Electron microscope	184
IV.2.3.7.	FTIR spectroscopy	188
Section C	Starch hydrolysis by using the immobilized	
	glucoamylase	190
IV.3.	Enzyme immobilization	190
IV.3.1.	Effect of degree of grafting on glucoamylase	
	immobilization	190
IV.3.2.	The effect of degree of grafting on the relative	100
11/2 2	activity of glucoamylase	190
IV.3.3.	FTIR spectroscopy	194
IV.3.4.	Hydrolysis of starch in a batch reactor	196
IV.3.5.	Effect of pH on the activity	199
IV.3.6.	Effect of temperature on the activity of native	• • •
	and immobilized enzyme	202
IV.3.7.	Kinetic effect of immobilization	204
IV.3.8.	Storage stability	207
IV.3.9.	Reusability of the immobilized enzyme	209
	Summary and Conclusion	210
	References	217
	Arabic Summary	

.

Abstract

This study deals with, First: irradiation of various physical forms of starch (solid and solution) with ⁶⁰Co gamma rays and electron beam investigate the effect of ionizing radiation on the molecular weight (M_W) of starch. Ultrasound irradiation was investigated to compare its degradation effect with ionizing radiation. Viscometer, rheometer and multi-angle static laser light scattering were employed to study the effect of radiation on starch. Influence of gases saturation during gamma treatment was studied. Second: Radiation induced graft copolymerisation of acrylamide (AAm) and acrylic acid (AAc) individually onto polypropylene fibers followed by chemical treatments were prepared as polymeric support for enzyme immobilization. Degrees of grafting were determined for each system. Structural changes and thermal properties of Third: were studied. the grafted copolymers Amyloglucosidase (GluA) was covalently immobilized on PPg-AAm and PP-g-AAc fibers by carbodiimide (CDI) as coupling agents. The relative activities, stability, effects of pH, buffer concentration and temperature on immobilization were investigated. The K_m values for the immobilized GluA on the PP-g-AAc and PP-g-AAm fibers are approximately two and four fold higher than that for the free GluA respectively. The decrease in V_{max} value as a result of immobilization is considered to be associated with the increase in K_m value, since the lower the K_m value, the greater the affinity of the enzyme for the substrate.

Key words: Radiation; starch, degradation, grafting, polypropylene fibers, enzyme immobilization

I

ACKNOWLEDGMENT

First of all, thanks to God for the infinite helps and persistent supply with patience and efforts to accomplish this work successfully.

The author wishes to express his deep gratitude and thanks to **Prof. Dr. Nadia M. Abdallah** Prof. of Biochemistry, Faculty of Science, Ain Shams University for her continues supervision, valuable advice and fruitful discussion throughout this work.

The author is highly indebted to **Prof. Dr. El-Sayed A. Hegazy,** Chairman of National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority for suggesting, planning the point of research, fruitful guidance and helpful discussions and also for the unfailed sincere guidance with encouragement during his direct supervision throughout this work.

Deepest thanks and sincere gratitude are due to Assistant Prof. Dr. Hanaa K. Mohamed, Polymer Chemistry Department (NCRRT), Atomic Energy Authority for her keen supervision, generous guidance, scientific and practical support throughout this study.

My sincere thanks are due to Assistant Prof. Dr. Gilane M. Sabry Biochemistry Department, Faculty of Science, Ain Shams University for her co-supervising,

Π

valuable discussion, interest, and continuous guidance and helps provided throughout this work.

I wish to extend a special thank you to **Professor** Janusz M. Rosiak, Head of Applied Radiation Chemistry division, Technical University of Lodz, Poland, for his fruitful guidance and helpful discussions during the IAEA Training fellowship.

Deepest thanks and sincere gratitude are due to Assistant Prof. Dr. Piotr Ulanski, Institute of Applied Radiation Chemistry Technical University of Lodz, Poland, for his practical support throughout the IAEA Training fellowship

Deepest thanks and sincere gratitude are due to **Prof. Dr. N. M. El Sawy,** Head of Polymer Chemistry Department (NCRRT), Atomic Energy Authority for his keen support throughout this study

Many thanks are also for all the staff members and colleagues of NCRRT especially, the biomaterial Lab, for their interest and facilities provided throughout this work and for all the staff members of Applied Radiation Chemistry division, Institute of Applied Radiation Chemistry, Technical University of Lodz,, Poland, for their interest and facilities provided throughout this work.

III

List of Abbreviations

$ γ γ η ΔHf ηred [η] a & k AAc AAm DLS DP DSC DT ELISA FDT FTIR GluA IDT kGy K_mau$ max Mrad Mv Mw PKa PP PP-g-AAc PP-g-AAm RG SEM SLS TGA	Shear stress (Pa) Shear rate (s-1) Melt viscosity (Pas) Heat of fusion Reduced viscosity Intrinsic viscosity Mark-Houwink parameter Acrylic acid Acrylamide Dynamic light-scattering Degree of Polymerization Differential scanning calorimeter Decomposition temperature Enzyme-Labeled Immunosorbent Assay Final decomposition temperature Fourier Transform Infrared Glucoamylase (Amyloglucoamylase) Initial decomposition temperature Kilo Gray Michaelis-Menten constant Maximum shear stress (Pa) Mega Radiation Absorbed Dose Viscosity-average molecular weights Molecular weight Dissociation constant Polypropylene Polypropylene grafted acrylic acid Polypropylene grafted acrylic acid Polypropylene grafted acrylamide Radius of gyration scanning electron micrographs Static light-scattering Thermogravimetric Analysis
SLS TGA Tm V_{max} Xc	Static light-scattering Thermogravimetric Analysis Melting temperature Maximal velocity Crystallinity
-	J · · J

IV

List of Figures

	List of Figures	
		Page
Fig.(1)	Effect of concentration and γ -irradiation	
	on reduced viscosity of starch	96
Fig.(2)	Intrinsic viscosity of starch as a function	
	of absorbed dose.	98
Fig.(3)	Effect of shear rates on the viscosity of	
	starch powder irradiated with gamma rays	
	as powder	100
Fig.(4)	Effect of shear rates on the viscosity of	
	the solid starch irradiated with electron	
	beam	101
Fig.(5)	Viscosity-average molecular weight of	
	starch as a function of absorbed dose	103
Fig.(6)	Weight-average molecular weight of	
	starch as a function of absorbed dose	104
Fig.(7)	Effect of absorbed dose on the viscosity	
	of solid starch irradiated as powder	105
Fig.(8)	Viscosity-average molecular weight of	
	starch irradiated as solution in Ar or O_2	
	atmosphere a function of absorbed dose	107
Fig.(9)	Absorption spectra of starch solution at	
	absorbed dose: 400 Gy	110
Fig.(10)	Absorbance of starch solution at 265 nm.	
T : (1.1)	as a function of absorbed dose	112
Fig.(11)	Viscosity-average molecular weight of	114
	starch irradiated by γ -rays at different	
T : (1 A)	physical form (solid and solution)	
Fig.(12)	Zimm plot for native corn starch in 0.05	
D : (10)	M NaClO ₄	117
Fig.(13)	Weight-average molecular weight of	
	starch irradiated by γ -rays at different	110
	physical form (solid and solution)	118
Fig.(14)	Radius of gyration of electron beam	

V

	irradiated corn starch as a function of Page absorbed dose
Fig.(15)	The infrared spectra of corn starch 121
Fig.(16)	Viscosity-average molecular weight of starch as a function of ultrasound sonication time
Fig.(17)	Weight-average molecular weight of starch as a function of ultrasound sonication time
Fig.(18)	Radius of gyration of irradiated corn starch as a function of ultrasound
Fig.(19)	sonication time
Fig.(20)	grafting process
1 16.(20)	the grafting process
Fig.(21)	Effect of monomer concentration on the grafting process
Fig.(22)	Effect of reaction time on the grafting process
Fig.(23)	Effect of irradiation dose on the grafting
Fig.(24)	Effect of storage time of irradiated fibers
Fig.(25)	on the grafting process
Fig(26)	beam
Fig.(26)	PP-g-AAm preirradiated by gamma rays 147
Fig.(27)	TGA Thermal diagram for PP blank and PP-g-AAc preirradiated by electron
Fig.(28)	beam
1 15.(20)	1011 Horman diagram for 11 blank and

VI

	PP-g-AAc preirradiated by gamma	
E . (2 0)	rays	155
Fig.(29)	TGA Thermal diagram for PP blank and	
	PP-g-AAm preirradiated by electron	150
E_{1}^{2} (20)	beam and gamma rays	138
Fig.(30)	TGA Thermal diagram for PP blank and PP a AA a proirrediated by electron beam	
	PP-g-AAc preirradiated by electron beam	159
Fig.(31)	and gamma rays DSC Thermogram for Blank- PP fibers	163
Fig.(31)	DSC Thermogram for PP-g-AAm $G\% =$	105
115.(52)	130, preirradiated by gamma rays and	
	electron beam	166
Fig.(33)	DSC Thermogram for PP-g-AAc $G\% =$	100
U ()	200, preirradiated by gamma rays and	167
	electron beam	
Fig.(34)	DSC Thermogram for PP-g-AAm with	
	different degree of grafting preirradiated	
	by gamma rays	168
Fig.(35)	DSC Thermogram for PP-g-AAc with	
	different degree of grafting preirradiated	
	by electron beam.	169
Fig.(36)	XRD graph of PP-fibers and PP-g-AAm	1.70
Γ : (27)	preirradiated by EB	172
Fig.(37)	XRD graph of PP-fibers and PP-g-AAm	172
E_{1}^{2} (29)	preirradiated by γ -rays	173
Fig.(38)	XRD graph of PP-fibers and PP-g-AA	174
Fig.(39)	preirradiated by EB XRD graph of PP-fibers and PP-g-AA	1/4
11g.(39)	preirradiated by γ -rays	175
Fig.(40)	XRD graph of PP-fibers and PP-g-AAm	175
115.(40)	preirradiated by EB and γ -rays	177
Fig.(41)	XRD graph of PP-fibers and PP-g-AAc	± / /
0.()	preirradiated by EB and γ -rays	178
Fig.(42)	Effect of fibers functional groups on	0

VII