HAEMATOPOITIC STEM CELL TRANSPLANTATION IN PATIENTS WITH (CHILD-C) END STAGE LIVER CIRRHOSIS

Submitted by

Dr. Nagwa Ramadan Ahmed Assistant Lecturer of Internal Medicine, Cairo University

Under Supervision of

Prof. Dr. Noaman Elgarm

Prof of internal medicine, Gastroenterology & Hepatology Faculty of Medicine – Cairo University

Prof. Dr. Mona Amin

Assistant Prof of internal medicine, Gastroenterology &Hepatology Faculty of Medicine – Cairo University

Prof. Dr. Hala Gaber

Prof of clinical pathology Faculty of Medicine – Cairo University

> Faculty of Medicine Cairo University 2008

Acknowledgment

First thanks to God.

Although no words can be sufficient to show my gratitude. *I* would like to express my great and sincere appreciation to **Prof. Dr. Noaman Elgarm**, professor of internal medicine, faculty of medicine, Cairo University for his continuous interest, encouragement, great care supervision and kind advice.

I am also grateful to **Prof. Dr. Mona Ahmed Amin** Assistant professor of internal medicine, faculty of medicine, Cairo University for her patience, encouragement, supervision, the precious help and advice during preparation of this work.

I am also grateful to **Prof. Dr. Halaa Gaber** professor of clinical pathology, faculty of medicine, Cairo University for her great help, support, guidance and supervision.

Finally *I* want to thank all the staff and colleagues in the department of internal medicine especially in my unit for being so nice, cooperative, and supportive to me during this study.

<u>ABSTRACT</u>

As there is huge demand for liver transplantation but there are never enough organs and the procedure is not always successful, we can use bone marrow or umbilical cord blood stem cells to help treat liver disease and reduce the need for liver transplantation (*Hunter D*, 2003).

The discovery of adult tissue specific stem cells such as haemopiotic stem cells, which have the ability to transdifferentiate into other tissues, has generated much excitement among cell biologists and transplant clinicians. It opens new avenaes for basic biological research by using stem cells from adults as an alternative to stem cells from embryos. It also carries important implications for the treatment of many liver, heart, and neurogenerative diseases (*Kuehnle I and A Goodell M, 2002*).

HSCs have been reported to produce not only all of the blood lineages, but also skeletal muscle (*Gussoni E et al*, 1999), neurons (*Brazelton TR et al*, 2000), cardiac muscle (*Orlic D et al*, 2001), pulmonary epithelium (*Krause DS and Theise ND*, 2001), and liver epithelium (*Petersen BE et al*, 1999).

These reports on stem cell plasticity and the observations on the expression of hematopoietic markers in oval cells described earlier led to the hypothesis that bone marrow stem cells may give also rise to epithelial cells, including hepatic oval cells. This was confirmed experimentally in 1999 by *Petersen* and coworkers (*Petersen BE et al, 1999*). A murine study showed that not only oval cells but also hepatocytes could be derived from donor bone marrow (*Thomas ED et al, 1975*).

Although most published information on adult stem cells draws heavily from studies with animal models, there is increasing clinical evidence to support the concept of stem cells transdifferentiation (*Theise et al, 2000*).

Recent findings indicate that adult BM also contains cells that can differentiate into additional mature, nonhematopoietic cells of multiple tissues including epithelial cells of the liver, kidney, lung, skin, gastrointestinal (GI) tract, and myocytes of heart and skeletal muscle (*Erica L et al, 2003*).

The new discovery that stem cells can also turn into liver cells inside patients means that marrow stem cells could eventually be used to repair damaged livers as well (*White D*, 2000).

Thus, presence of such hepatocyte progenitor cells in BM could explain that in vivo differentiation of bone marrow into hepatocytes noted in recent studies ((*Lagasse E et al, 2000*).

To ensure that the human stem cells developed into liverlike cells, the researchers tested for the presence of a human protein, albumin that is only produced by the liver (*Hunter D*, 2003).

In some reports the degree of hepatocyte replacement achieved after hematopoietic repopulation equaled or exceeded the results obtained by hepatocyte transplantation (*Theise ND et al, 2000*).

The result of present work shows that stem cell transplantation have a beneficial effect on synthetic function of the liver and possibly improve survival and quality of life of patients with end stage liver disease. Hepatocyte transplantation may not be able to reverse portal hypertension, or the development of HCC, but improvement in liver physiology and patient survival could be possible and could play a significant role in the management of patients with liver failure.

LIST OF CONTENTS

LIST OF TABLES	VIII
LIST OF FIGURES	IX
LIST OF ABBREVIATIONS	Х
INTRODUCTION AND AIM OF THE WORK	XI
<u>Chapter I</u>	
Definition and general features of cirrhosis	3
Epidemiology	4
Classification of cirrhosis	5
Causes of cirrhosis	8
Pathophysiology	12
Clinical manifestation of cirrhosis	17
Sequelae of cirrhosis	17
Compensated cirrhosis	21
Decompensated cirrhosis	22
<u>Chapter II</u>	
Diagnosis of liver cirrhosis	25
Laboratory findings	26
Prognosis of liver cirrhosis	28
Childs classification of liver cirrhosis	30
Common causes of liver cirrhosis	33
Major sequelae of cirrhosis	48
<u>Chapter III</u>	
Treatment of liver cirrhosis	70

Diagnosis and emerging therapy of hepatic fibrosis71	
Slowing or reversing the progression of liver disease74	
Treatment of underlying causes of liver cirrhosis75	
Treatment of alcohol induced liver disease75	
Treatment of primary biliary cirrhosis78	
Treatment of secondary biliary cirrhosis	
Therapy of chronic hepatitis B81	
Decompensated hepatitis B cirrhosis85	
Treatment of patients with hepatitis C and cirrhosis	
Treating complication of liver cirrhosis	
Diagnosis and treatment of variceal hemorrhage	
Treatment of ascites102	
Treatment of hepatic encephalopathy103	
Treatment of hepatocellular carcinoma104	
Nutritional supplements that may be helpful in	
cirrhosis105	
<u>Chapter IV</u>	
Liver transplantation114	
Indication and selection criteria for liver transplantation115	
Referral for liver transplantation116	
Biochemical and clinical indications for liver transplantation in	
chronic liver disease116	
King's college criteria for liver transplantation in fulminant	

hepatic failure	117
Listing for liver transplantation	118

Allocation of donor organs	119
Absolute contraindication to liver transplantation	120
Relative contraindication	122
The transplant procedure	123
Evolving approaches to liver transplantation	124
Post-transplantation management	125
Early complications after liver transplantation	126
Acute and chronic allograft rejection	128
Biliary complications following liver transplantation	129
Infections	131
Long-term-follow-up	133
Hepatocyte transplantation	136
Gene therapy	151
Xenotransplantation	151
Bioartificial liver	152
<u>Chapter V</u>	
What are stem cells	154
Stem cell nich	156
Stem cell plasticity	158
Hematopiotis stem cell	160
Clinical uses of hematopiotis stem cell	162
Factors used to optimize hepatocyte formation from	
hematopiotis stem cell	180
Functional assessment of hepatocyte produced from	
hematopiotis stem cell	181

<u>Chapter VI</u>

Patints and methods	
<u>Chapter VII</u>	
Results	
Discussion	
Summary	
References	
Arabic summary	1

LIST OF TABLES

Table 1-1: Showing components of histological activity index
(HAI)10
Table 1-2: Showing scoring systems for staging of chronic
hepatitis11
Table 2-1: Estimating prognosis in patients with primary biliary
cirrhosis40
Table 2-2: Estimating prognostic index for survival after liver
transplantation in patients with primary biliary cirrhosis41
Table 3-1: Annual incidence of hepatocellular carcinoma95
Table 4-1: Survival after adult liver transplantation by
diagnosis114
Table 4-2: Relationship between MELD and 3-month mortality
in hospitalized cirrhotic patients120
Table 1: Shows the demographic characteristic of both
groups198
Table 2: Shows the baseline laboratory data of both
groups199
Table 3: Demonstrates the laboratory data after 3 months
follow up of both groups
Table 4: Demonstrates the laboratory data after 6 months
follow up of both groups201
Table 5: Demonstrates the mortality rate among both groups
during the follow up period202

LIST OF FIGURES

Figure 1-1: shows sinusoidal events during fibrosing liver
injury13
Figure 2-1: shows gastrointestinal hemorrhage due to
esophageo variceal bleeding53
Figure 3-1: shows histological response to interferone93
Figure 3-2: shows endoscopic image display 2 esophageal
varices that have been ligated100
Figure 5-1: shows fused bone marrow and liver cells have three
X chromosomes (pink) and one Y chromosome (green)165
Figure 1: Total Bilirubin levels in both groups before and 6
months after stem cell transplantation
Figure 2: AST levels in both groups before and 6 months after
stem cell transplantation
Figure 3: ALT levels in both groups before and 6 months after
stem cell transplantation
Figure 4: Alkaline phosphates levels in both groups before and
6 months after stem cell transplantation
Figure 5: serum Albumin levels in both groups before and 6
months after stem cell transplantation
Figure 6: Prothrombin time in both groups before and 6 months
after stem cell transplantation205

Figure 7: Prothrombin concentration in both groups befor	e and
6 months after stem cell transplantation	206
Figure 8: INR levels in both groups before and 6 months a	after
stem cell transplantation	206

LIST OF ABBREVIATION

LC: Liver cirrhosis PDGF: Platelet derived growth factor EGF: Epithelial growth factor NFKB: Nuclear factor kappa B PrP: Prion protein ET1: Endothelin 1 IGF: Insulin like growth factor MCP-1: Monocyte chemotactic peptide 1 IL1B: Interleukin 1B TNF: Tumor necrosis factor MMPs: Matrix metalloproteinase TIMMPs: Tissue inhibitors of matrix metalloproteinase HCC: Hepatocellular carcinoma VEGF: Vascular endothelial growth factor HGF: Hepatocyte growth factor HMG: High mobility group **TCF:** Transcription factor 4 TGF-B1: Transforming growth factor B1 AST: Aspartat aminotransferase ALT: Alanine aminotransferase LDH: Lactate dehydrogenase GGT: Gamma glutamyl transferase SBP: Spontaneous bacterial peritonitis

PCR: Polymerase chain reaction

ANA: Anti-nuclear antibody

AMA: Anti-mitochondrial antibody

ASMA: Anti-smooth muscle antibody

HCC: Hepatocellular carcinoma

MELD: Model for end stage liver disease

TIPSS: Tansjugular intrahepatic portosytemic stent shunt

MEGX: Monoethylglycinexylidide

HAV: Hepatitis A virus

HBV: Hepatitis B virus

HCV: Hepatitis C virus

HDV: Hepatitis delta virus

PBC: Primary biliary cirrhosis

SBC: Secondary biliary cirrhosis

CREST syndrome: (Calcinosis, Raynauds phenomenon,

esophageal involvement, sclerodactely and skin changes in the

fingers, telangiectasia)

INR: International normalized ratio

NASH: Non alcoholic steatohepatitis

SAAG: Serum ascites albumin gradient

KGF: Keratinocyte growth factor

PMN: Polymorphonuclear

WBC: White blood cell

CT: Computed tomography

NSAIDs: Non steroidal anti-inflammatory drugs

PSE: Portosystemic encephalopathy

ALD: Alcohol induced liver disease

PUL: Poly unsaturated lecithin

SAM: S-adenosyl1-1 methionin

PSC: Primary sclerosing cholangitis

MMF: Micophenolate mofetile

UDCA: Ursodeoxy cholic acid

MU: million units

IFN: Interferon

BCAAs: Branched chain amino acids

OA: L-ornithin-L asparetate

CTP: Child-Turcotte-Pugh

ICP: Intra cranial pressure

UNOS: United Network for Organ Sharing

CMV: Cytomegalovirus

HMG-CoA: 3 hydroxy-3-methyl glutaryl co enzyme A

ESc: Embryonic stem cells

G-CSF: Granulocyte colony stimulating factor

HSC: Hematopiotic stem cell

BMSC: Bone marrow stem cell

SDF-1alpha: Stromal derived factor1 alpha

CD34: Cluster of differentiation

CK19: Cytokeratin 19

SVR: Sustained virologic response

CYP: Cytochrome P