

# **Nanoparticles for Targeting Colon Cancer**

A Thesis Submitted as Partial Fulfillment of the Requirements for the Master Degree of Pharmaceutical Sciences (Pharmaceutics)

### By

### Lydia Ramzy Adly Ramzy

Bachelor of Pharmaceutical Science, June 2011, Ain Shams University Demonstrator, department of Pharmaceutics and Industrial pharmacy Faculty of Pharmacy, Ain Shams University

Under the supervision of

### Professor Dr. Gehanne Abd El-Samee Awad

Professor of Pharmaceutics and Industrial Pharmacy Faculty of pharmacy, Ain Shams University

### Associate Professor Dr. Maha Nasr Sayed

Associate Professor of Pharmaceutics and Industrial Pharmacy Faculty of pharmacy, Ain Shams University

### Dr. Abdelkader Ali Mostafa

Lecturer of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy, Ain Shams University

Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy Ain Shams University, Cairo, Egypt (2018)



# " جسيمات نانوية لتهديف سرطان القولون" رسالة مقدمة من ليديا رمزى عدلى رمزى بكالوريوس العلوم الصيدلية، 2011 جامعة عين شمس معيدة بقسم الصيدلانيات و الصيدلة الصناعية، كلية الصيدلة جامعة عين شمس للاستيفاء الجزئى لمتطلبات الحصول على درجة الماجستير فى العلوم الصيدلية (صيدلانيات)

تحت اشراف کل من أ.د. جيهان عبد السميع عوض

أستاذ بقسم الصيدلانيات و الصيدلة الصناعية- كلية الصيدلة- جامعة عين شمس

أ.م.د. مها نصر سيد

أستاذ مساعد بقسم الصيدلانيات و الصيدلة الصناعية- كلية الصيدلة- جامعة عين شمس

### د. عبد القادر على مصطفى

مدرس بقسم الصيدلانيات و الصيدلة الصناعية- كلية الصيدلة- جامعة عين شمس

قسم الصيدلانيات والصيدلة الصناعية كلية الصيدلة- جامعة عين شمس (2018)

# Acknowledgement

#### Acknowledgement

First and foremost thanks to **God** by the grace of whom this work was achieved.

I would like to express my sincerest appreciation to **Prof. Dr. Gehanne Abd El-Samie Awad,** Professor of Pharmaceutics and Industrial Pharmacy, for her valuable guidance, precious advice, continuous support and encouragement throughout the development of this thesis.

I would like to express my gratitude and sincere appreciation to **Dr**. **Abdelkader Ali Mostafa**, Lecturer of Pharmaceutics and Industrial Pharmacy, for his continuous guidance and support, valuable advice and the great effort he devoted for the completion of this work. I can never pay him back for the experience he has helped me to gain.

I would like to express my gratitude and sincere appreciation to **Dr. Maha Nasr Sayed,** Associate Professor of Pharmaceutics and Industrial Pharmacy, to whom I owe so much for her great help, instructive supervision, continuous guidance and encouragement and great effort throughout the development of this thesis.

I would like to thank all the staff members in the **department of Pharmaceutics and Industrial Pharmacy,** Faculty of Pharmacy, Ain Shams University, for helping me throughout the whole thesis.

I could never express my deepest thanks and sincere appreciation to my dear mother and brother for their great effort, continuous encouragement and moral support throughout the development of this thesis.

# Dedication

I dedicate this thesis to the soul of my great lovely father. I also dedicate this thesis to my dear mother and brother that without their great effort, help and moral support this work would not have been accomplished. Thank you.

| List | of | Contents |
|------|----|----------|
|      |    |          |

| Item                                                                                                                   | Page |
|------------------------------------------------------------------------------------------------------------------------|------|
| List of Abbreviations                                                                                                  | V    |
| List of Tables                                                                                                         | VIII |
| List of Figures                                                                                                        | X    |
| List of Schemes                                                                                                        | XIV  |
| Abstract                                                                                                               | XV   |
| General Introduction                                                                                                   | 1    |
| Scope of Work                                                                                                          | 26   |
| Chapter (1): Preparation and Characterizati<br>Thymoquinone Nanocapsules for Passive Target<br>Colorectal Cancer Cells |      |
| Introduction                                                                                                           | 28   |
| Experimental                                                                                                           | 34   |
| Materials                                                                                                              | 34   |
| Equipment                                                                                                              | 35   |
| Methodology                                                                                                            | 36   |
| I- Ultraviolet (U.V.) scanning of TQ in different solvents                                                             | 36   |
| II- Construction of calibration curves of TQ in the corresponding solvents                                             | 36   |
| III- Preformulation studies                                                                                            |      |
| IV- Preparation of TQ-loaded nanocapsules                                                                              | 37   |
| V- Characterization of TQ-loaded nanocapsules                                                                          | 38   |
| 1. Particle size and zeta potential measurement                                                                        | 38   |
| 2. Determination of entrapment efficiency % of TQ (EE%)                                                                | 39   |
| 3. In vitro release of TQ from nanocapsules                                                                            | 39   |
| 4. Determination of the physical stability of the nanocapsules                                                         | 41   |
| 5. Transmission electron microscopy (TEM)                                                                              | 41   |
| VI- Statistical analysis                                                                                               | 41   |
| Results and Discussion                                                                                                 | 42   |
| I- Ultraviolet (U.V.) scanning of TQ in different solvents                                                             | 42   |

| II- Construction of calibration curves of TQ in the corresponding solvents                                                                                                                                                                                               | 42             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| III- Preformulation studies                                                                                                                                                                                                                                              | 49             |
| IV- Preparation of TQ-loaded nanocapsules                                                                                                                                                                                                                                | 50             |
| V- Characterization of TQ-loaded nanocapsules                                                                                                                                                                                                                            | 50             |
| 1. Particle size and zeta potential measurement                                                                                                                                                                                                                          | 50             |
| 2. Determination of entrapment efficiency % of TQ (EE%)                                                                                                                                                                                                                  | 51             |
| 3. In vitro release of TQ from nanocapsules                                                                                                                                                                                                                              | 54             |
| 4. Determination of the physical stability of the nanocapsules                                                                                                                                                                                                           | 62             |
| 5. Transmission electron microscopy (TEM)                                                                                                                                                                                                                                | 65             |
| Conclusions                                                                                                                                                                                                                                                              | 66             |
| Thymoquinone Nanocapsules for Active Targeting of Col<br>Cancer Cells<br>Introduction                                                                                                                                                                                    | orectal<br>67  |
| Experimental                                                                                                                                                                                                                                                             | 74             |
| Materials                                                                                                                                                                                                                                                                | 74             |
| Equipment                                                                                                                                                                                                                                                                | 75             |
| Structures                                                                                                                                                                                                                                                               | 76             |
| Software                                                                                                                                                                                                                                                                 | 76             |
| Methodology                                                                                                                                                                                                                                                              | 77             |
| I- Synthesis of AA-conjugated Eudragit S100                                                                                                                                                                                                                              | 79             |
| 1. Synthesis of tert-butyl (6-(4-methoxybenzamido)hexyl)carbamate (product I)                                                                                                                                                                                            | 79             |
|                                                                                                                                                                                                                                                                          |                |
| 2. Separation of filtrate products obtained in step (1)                                                                                                                                                                                                                  | 79             |
| <ul> <li>2. Separation of filtrate products obtained in step (1)</li> <li>3. Deprotection of the purified product (I) and formation of product (II) (Synthesis of <i>N</i>-(6-aminohexyl)-4-methoxybenzamide (anisamide conjugate))</li> </ul>                           | 79<br>79       |
| 3. Deprotection of the purified product (I) and formation of product<br>(II) (Synthesis of <i>N</i> -(6-aminohexyl)-4-methoxybenzamide                                                                                                                                   |                |
| 3. Deprotection of the purified product (I) and formation of product (II) (Synthesis of <i>N</i> -(6-aminohexyl)-4-methoxybenzamide (anisamide conjugate))                                                                                                               | 79             |
| <ul> <li>3. Deprotection of the purified product (I) and formation of product (II) (Synthesis of <i>N</i>-(6-aminohexyl)-4-methoxybenzamide (anisamide conjugate))</li> <li>4. Synthesis of AA-conjugated Eudragit S100</li> </ul>                                       | 79<br>80       |
| <ul> <li>3. Deprotection of the purified product (I) and formation of product (II) (Synthesis of <i>N</i>-(6-aminohexyl)-4-methoxybenzamide (anisamide conjugate))</li> <li>4. Synthesis of AA-conjugated Eudragit S100</li> <li>5. Products characterization</li> </ul> | 79<br>80<br>80 |

| III- Characterization of AA-conjugated TQ-loaded nanocapsules                                                                                              | 82  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1. Particle size and zeta potential measurement                                                                                                            | 82  |
| 2. Determination of entrapment efficiency % of TQ (EE%)                                                                                                    | 82  |
| 3. In vitro release of TQ from nanocapsules                                                                                                                | 82  |
| 4. Determination of the physical stability of the nanocapsules                                                                                             | 82  |
| 5. Transmission electron microscopy (TEM)                                                                                                                  | 82  |
| IV- Statistical analysis                                                                                                                                   | 83  |
| Results and Discussion                                                                                                                                     | 84  |
| I- Synthesis of AA-conjugated Eudragit S100                                                                                                                | 84  |
| 1. Synthesis of tert-butyl (6-(4-methoxybenzamido)hexyl)carbamate (product I)                                                                              | 84  |
| 1.1. Characterization of the reaction products using <sup>1</sup> H-NMR                                                                                    | 84  |
| 2. Separation of filtrate products obtained in step (1)                                                                                                    | 90  |
| 2.1. TLC and column chromatography studies                                                                                                                 | 90  |
| 2.2. <sup>1</sup> H-NMR studies                                                                                                                            | 92  |
| 2.3. Mass spectrometry studies                                                                                                                             |     |
| 3. Deprotection of the purified product (I) and formation of product (II) (Synthesis of <i>N</i> -(6-aminohexyl)-4-methoxybenzamide (anisamide conjugate)) | 99  |
| 4. Synthesis of AA-conjugated Eudragit S100                                                                                                                | 101 |
| 4.1. Characterization of the conjugated and unconjugated Eudragit S100                                                                                     | 104 |
| 4.1.1. <sup>1</sup> H-NMR                                                                                                                                  | 104 |
| III- Characterization of AA-conjugated TQ-loaded nanocapsules                                                                                              | 107 |
| 1. Particle size and zeta potential measurement                                                                                                            | 107 |
| 2. Determination of entrapment efficiency % of TQ (EE%)                                                                                                    | 107 |
| 3. In vitro release of TQ from nanocapsules                                                                                                                |     |
| 4. Determination of the physical stability of the nanocapsules                                                                                             |     |
| 5. Transmission electron microscopy (TEM)                                                                                                                  |     |
| Conclusions                                                                                                                                                | 113 |
| Chapter (3):In VitroCytotoxicity ofThymoqNanocapsulesandAnisamide-ConjugatedThymoqNanocapsules                                                             |     |

| Introduction                                                                                         | 115 |
|------------------------------------------------------------------------------------------------------|-----|
| Experimental                                                                                         |     |
| Materials                                                                                            | 118 |
| Cell lines                                                                                           | 118 |
| Equipment                                                                                            | 118 |
| Methodology                                                                                          | 119 |
| I- Cell culture                                                                                      | 119 |
| II- Cytotoxicity assay using 3-[4,5-dimethylthiazole-2-yl]-2,5-<br>diphenyltetrazolium bromide (MTT) | 119 |
| III- Statistical analysis                                                                            | 120 |
| Results and Discussion                                                                               |     |
| Cytotoxicity assay using 3-[4,5-dimethylthiazole-2-yl]-2,5-<br>diphenyltetrazolium bromide (MTT)     | 121 |
| Conclusions                                                                                          |     |
| General conclusion                                                                                   |     |
| Future perspectives                                                                                  | 135 |
| Summary                                                                                              |     |
| References                                                                                           | 144 |
| Appendix                                                                                             | 176 |
| Arabic Summary                                                                                       |     |

## **List of Abbreviations**

| Adamantane                                                                                                       | Ad    |
|------------------------------------------------------------------------------------------------------------------|-------|
| Alanine transaminase                                                                                             | ALT   |
| Alkaline phosphatase                                                                                             | ALP   |
| Anisamide                                                                                                        | AA    |
| Aspartate transaminase                                                                                           | AST   |
| B-cell lymphoma 2                                                                                                | Bcl-2 |
| tert-butyloxycarbonyl                                                                                            | Boc   |
| Chemical shift                                                                                                   | δ     |
| Chitosan                                                                                                         | CS    |
| Colon-specific drug delivery                                                                                     | CSDD  |
| Colony forming unit                                                                                              | cfu   |
| Cyclodextrin                                                                                                     | CD    |
| Cyclooxygenase-2                                                                                                 | COX-2 |
| Dichloromethane                                                                                                  | DCM   |
| N,N'-Dicyclohexylcarbodiimide                                                                                    | DCC   |
| 4-(Dimethylamino)pyridine                                                                                        | DMAP  |
| Dimethyl sulfoxide                                                                                               | DMSO  |
| 1,2-dioleoyl-3-trimethylammonium-propane                                                                         | DOTAP |
| <i>N</i> , <i>N</i> -distearyl- <i>N</i> -methyl- <i>N</i> -2-( <i>N</i> `-arginyl) aminoethyl ammonium chloride | DSAA  |
| DT-diaphorase                                                                                                    | DTD   |
| Entrapment efficiency %                                                                                          | EE%   |
| Enhanced Permeability and Retention                                                                              | EPR   |
| Epidermal growth factor receptor                                                                                 | EGFR  |
| Fluorescein isothiocyanate                                                                                       | FITC  |
| Gastrointestinal tract                                                                                           | GIT   |
| Hyaluronic acid                                                                                                  | HA    |
|                                                                                                                  |       |

| List | of          | abbr | evi | ations |
|------|-------------|------|-----|--------|
|      | ~. <i>I</i> |      |     |        |

| Hydroxy propyl cellulose                             | HPC                       |
|------------------------------------------------------|---------------------------|
| Hypoxia-inducible factor 1 alpha                     | HIF-1α                    |
| Inflammatory bowel disease                           | IBD                       |
| Interleukin-1beta                                    | IL-1β                     |
| Kilodalton                                           | kDa                       |
| Kilovolt                                             | kV                        |
| Lipid/calcium/phosphate                              | LCP                       |
| Lipid core nanocapsules                              | LCNCs                     |
| Lipid nanocapsules                                   | LNCs                      |
|                                                      | LINCS                     |
| Liposomal calcium carbonate                          |                           |
| Median lethal dose                                   | $LD_{50}$                 |
| 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium | MTT                       |
| bromide                                              |                           |
| Monocyte chemoattractant protein-1                   | MCP-1                     |
| Myelocytomatosis                                     | c-Myc                     |
| Murine double minute 2 gene product                  | MDM2                      |
| Nanostructured lipid carriers                        | NLCs                      |
| Nuclear factor-kappa B                               | NF-κB                     |
| Nuclear magnetic resonance                           | NMR                       |
| Number of scans                                      | NS                        |
| Polo-like kinase 1                                   | PLK1                      |
| Poly(ɛ-caprolactone)                                 | PCL                       |
| Polydispersity index                                 | PDI                       |
| Polyethylene glycol                                  | PEG                       |
| Poly(lactide-co-glycolide)                           | PLGA                      |
| Poly-L-lysine                                        | PLL                       |
| Reactive oxygen species                              | ROS                       |
| Retention factor                                     | $\mathbf{R}_{\mathrm{f}}$ |
| Rheumatoid arthritis                                 | RA                        |

## List of abbreviations

| Roswell Park Memorial Institute medium  | RPMI 1640       |
|-----------------------------------------|-----------------|
| Serum glutamic oxaloacetic transaminase | SGOT            |
| Serum glutamic pyruvic transaminase     | SGPT            |
| Sigma                                   | σ               |
| Simulated intestinal fluid              | SIF             |
| small interfering RNA                   | siRNA           |
| Solid lipid nanoparticles               | SLNs            |
| Standard deviation                      | S.D.            |
| Transmission electron microscopy        | TEM             |
| Thin layer chromatography               | TLC             |
| Thymoquinone                            | TQ              |
| Trifluoroacetic acid                    | TFA             |
| Tumor necrosis factor-alpha             | TNF-α           |
| Ultraviolet                             | U.V.            |
| Vascular endothelial growth factor      | VEGF            |
| Vascular cell adhesion molecule-1       | VCAM-1          |
| Wavelength of maximum absorption        | $\lambda_{max}$ |

| Table no. | Table name                                                                                                                     | Page |
|-----------|--------------------------------------------------------------------------------------------------------------------------------|------|
| Ι         | Variations in pH along the GIT                                                                                                 | 13   |
| II        | Polymers used for enteric coating and colon targeting                                                                          | 13   |
| III       | Transit time of different parts of GIT                                                                                         | 15   |
| 1         | The composition of TQ-loaded nanocapsules and nanoemulsions                                                                    | 38   |
| 2         | Particle size, polydispersity index (PDI), zeta<br>potential and EE% of the prepared nanocapsular<br>formulations              | 52   |
| 3         | Percentage released of TQ from nanocapsular formulations at different pHs                                                      | 55   |
| 4         | Percentage released of TQ from nanoemulsion formulations at different pHs                                                      | 57   |
| 5         | Percentage released of TQ from nanocapsular<br>formulation F3 prepared using different drug<br>concentrations at different pHs | 58   |
| 6         | Percentage released of TQ from nanocapsular formulation F3 using SIF                                                           | 60   |
| 7         | Percentage released of TQ from nanocapsular<br>formulation F3, nanoemulsion F3-NE and free TQ<br>in SIF                        | 61   |
| 8         | Physical stability of the selected nanocapsular formulation stored at 2-8 °C after 45 and 90 days                              | 63   |
| 9         | Particle size, polydispersity index (PDI), zeta<br>potential and EE% of AA-conjugated TQ-loaded<br>nanocapsules                | 107  |

## List of tables

| 10 | Percentage released of TQ from F3-AA and F3 in different pHs                                                                                             | 109 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 11 | Effect of SIF on the release of TQ from F3-AA and F3                                                                                                     | 110 |
| 12 | Physical stability of AA-conjugated nanocapsularformulation stored at 2-8 °C after 45 and 90 days                                                        | 111 |
| 13 | Cell viability of HT-29 cells after incubation with<br>free TQ and various nanoformulations for 24 hours                                                 | 124 |
| 14 | Cell viability of HT-29 cells after incubation with<br>free TQ and various nanoformulations for 48 hours                                                 | 125 |
| 15 | Cell viability of HCT-116 cells after incubation with<br>free TQ and various nanoformulations for 24 hours                                               | 127 |
| 16 | Cell viability of HCT-116 cells after incubation with<br>free TQ and various nanoformulations for 48 hours                                               | 128 |
| 17 | Cell viability of Caco-2 cells after incubation with<br>free TQ and various nanoformulations for 24 hours                                                | 130 |
| 18 | Cell viability of Caco-2 cells after incubation with<br>free TQ and various nanoformulations for 48 hours                                                | 131 |
| 19 | $      IC_{50} (\mu M) \text{ of free TQ and TQ-loaded nanocapsules} \\       on colon cancer cell lines after incubation for 24 and \\       48 hours $ | 132 |

# **List of Figures**

| Figure | Figure name                                                                                            | Page  |
|--------|--------------------------------------------------------------------------------------------------------|-------|
| no.    | rigure name                                                                                            | 1 age |
| Ι      | The mechanism of cancer development and the need for angiogenesis                                      | 3     |
| II     | A diagram showing the abnormalities in the vasculature of<br>tumor tissues compared to healthy tissues | 4     |
| III    | A diagram showing the differences between passive and active targeting                                 | 9     |
| IV     | Anatomy and physiology of the colon                                                                    | 11    |
| V      | Design of enteric coated timed-release press-coated tablet                                             | 15    |
| 1      | The chemical structure of Eudragit <sup>®</sup> S100                                                   | 18    |
| 2      | The chemical structure of TQ                                                                           | 19    |
| VI     | Comparison between the structure of nanospheres and nanocapsules                                       | 29    |
| VII    | The structure of LNCs in contrast to LCNCs                                                             | 29    |
| 3      | Ultraviolet spectrum of TQ in absolute ethanol                                                         | 43    |
| 4      | Ultraviolet spectrum of TQ in pH 1.2                                                                   | 44    |
| 5      | Ultraviolet spectrum of TQ in pH 5.5                                                                   | 44    |
| 6      | Ultraviolet spectrum of TQ in pH 6.8                                                                   | 45    |
| 7      | Ultraviolet spectrum of TQ in pH 7.4                                                                   | 45    |
| 8      | Ultraviolet spectrum of TQ in SIF                                                                      | 46    |
| 9      | Calibration curve of TQ in absolute ethanol at 253.4 nm                                                | 46    |
| 10     | Calibration curve of TQ in pH 1.2 at 257.8 nm                                                          | 47    |
| 11     | Calibration curve of TQ in pH 5.5 at 257.8 nm                                                          | 47    |
| 12     | Calibration curve of TQ in pH 6.8 at 258.6 nm                                                          | 48    |
| 13     | Calibration curve of TQ in pH 7.4 at 258 nm                                                            | 48    |