Evaluation of Significance of Bispectral Index As a Monitor of Depth of Anesthesia

Thesis

Submitted For Partial Fulfillment of the MDDegree inAnesthesia

By

HAYTHAM SAEED HANAFI

MB.BCh.,M.Sc - Faculty of Medicine-AinShamsUniversity

Under Supervision of

Prof. Dr. MOHAMED SAEED ABD EL AZIZ

Professor of Anesthesia and Intensive Care Faculty of Medicine, Ain Shams University

Prof. Dr. WALEED ABD EL MAGED MOHAMED

Professor of Anesthesia and Intensive Care Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University

AIM OF WORK

To evaluate the significance of bispectral index as a monitor of depth of anesthesia by comparing the bispectral analysis monitor score and stress hormones level and hemodynamic readings at pre-determined intervals throughout the whole surgical procedure. So, if it beneficial we will recommend to widen its use to decrease the incidence of awareness during anesthesia and if not, we will go on searching for other methods to fulfill this target.

كلية الطب جامعة عين شمس 2015 **Contents**

Page	
Introduction	1
Aim of the work	4
Review of Literature	5
Patients and Methods	130
Results	152
Discussion	163
Conclusion	171
Summary	174
References	181
🕮 Arabic Summary	

List of Abbreviation

AAI	A-line ARX Index
AANA	American Association of Nurse Anesthetists
ACTH	. AdrenoCorticoTrophic Hormone
AER(P)	Auditory Evoked Response (Potential)
ANOVA	Analysis of Variance
ARX	Autoregressive model with an exogenous input
ASA	American Society of Anesthesiologists
ASSR	Auditory Steady State Evoked Response
AUC	Area under the Curve
AVP	. Arginine Vasopressin
BAER	Brainstem Auditory-Evoked Response
BDZ	Benzodiazepines
BIS	Bispectral Index Scale
BSR	Burst Suppression Ratio
CNS	Central Nervous System
СРВ	Cardiopulmonary Bypass
CS	Cesarean Section
CVS	Cardiovascular System
DoA	Depth of Anesthesia
ECG	Electrocardiogram
EEG	Electroencephalogram
EMG	Electromyogram
ЕТТ	Endotracheal Tube

FDA	.Food and Drug Administration
GA	.General Anesthesia
GH	Growth Hormone
HRV	.Heart rate variability
Hz	. Hertz (cycle/sec)
ID	. Identification
IDT	. Induction to Delivery Time
IV	. Intravenous
JCAHO	Joint Commission on Accreditation of Health Care Organization
LTM	.Long Time Memory
MAC	.Minimum Alveolar Concentration
MIC	Monitor Interface Cable
MLAER	.Middle Latency Auditory Evoked Response
N_2O	. Nitrous Oxide
P value	Probability value
PACU	.Post Anesthesia Care Unit
PET	Positron Emission Tomography.
PIC	Patient Interface Cable
PSA	.Patient State Analyzer
PSI	.Patient state Index
PTSD	.Post Traumatic Stress Disorder
RE	.Response Entropy
SD	. Standard Deviation
SE	.State Entropy
SEF	.Spectral Edge Frequency
SEMG	.Spontaneous Surface Electromyogram

SLOC	Spontaneous Lower Esophageal Contractility
SPSS	Statistical Package for Social Sciences
SQI	Signal Quality Indicator
SSER	Somatosensory Evoked Response
STM	Short Time Memory
TIVA	Total Intravenous Anesthesia
UDT	Uterine incision to Delivery Time
US	United States
USB	Universal Serial Bus
VER	Visual Evoked Responses

List of Figures

Figure No.	Figure title	Page No.
1	Atkinson-Shiffrin model of memory.	9
2	International 10-20 system of electrode placement for recording electroencephalograms and sensory evoked responses.	73
3	EEG waveforms: alpha, beta, theta and delta.	75
4	Raw EEG waves. (A) the awake state; (B) β -activation; (C) burst suppression.	78
5	Fast Fourier transformation to convert raw EEG to power spectrum.	81
6	Schematic representation of a power spectrum.	82
7	Frontal view of the A-2000 BIS-XP Monitor (Aspect Medical Inc., Newton, MA, USA).	85
8	The BIS VISTA TM bilateral monitoring system.	
9	A, Clinical correlations of the BIS index. B, EEG changes observed with increasing DoA.	
10	Frontal view of the Narcotrend Monitor (Narcotrend Monitor, Schiller AG, Baar, Switzerland).	
11	EEG patterns observed at different levels of anaesthesia and the respective Narcotrend stages.	
12	Picture of the SEDLinew EEG instrument that is capable of calculation of PSI.	100
13	View of the M-Entropy module and the partial screen of the S/5 [®] -Monitor (GE Healthcare, Helsinki, Finland).	102
14	The auditory evoked response.	109

Figure No.	Figure title	
15	The BIS VISTA TM unilateral monitoring system	
16	The pole clamp.	135
17	The rear panel.	136
18	The BIS Quatro [™] sensor.	138
19	Connecting the PIC.	140
20	Screen Features - BIS trend data screen.	141
21	BIS range guidelines.	143
22	Comparison between heart rate values among different time points.	153
23	Comparison between MAP values among different time points.	155
24	Comparison between serum adrenaline measures among different time points.	157
25	Comparison between serum cortisol measures among different time points.	159
26	Comparison between bispectral index readings among different time points.	161

List of Figures(cont..)

List of Tables

Table No.	Table Title	Page No.
1	Patient perceptions of awareness	115
2	Prevention of awareness	118
3	Management of awareness during anesthesia	124
4	Heart rate values range among different time points (mean±SD)	152
5	Comparison between heart rate values among different time points	152
6	MAP values range among different time points (mean±SD)	154
7	Comparison between MAP values among different time points	154
8	Serum adrenaline measures range among different time points (mean \pm SD)	156
9	comparison between Serum adrenaline measures range among different time points	156
10	Serum cortisol measures range among different time points (mean±SD)	158
11	comparison between Serum cortisol measures range among different time points	158
12	Bispectral index readings range among different time points (mean±SD)	160
13	comparison between Bispectral index readings among different time points	160
14	comparison between change in Bispectral index readings, change in hemodynamic values (HR, MAP) and change in stress hormones measures (serum cortisol, serum adrenaline) among different time points	162

Table	Table Title	Page
No.		No.

INTRODUCTION

Intraoperative awareness is defined as the spontaneous recall of an event occurring during general anesthesia. Awareness during general anesthesia is a problem that has been increasingly recognized since the introduction of muscle relaxants as a component of the anesthetic regimen *(Tsai et al, 2001).*

Patient awareness may take the form of explicit or implicit memory. Explicit memory involves information that is consciously recalled; whereas implicit or indirect memory involves retention of information that may be recalled under hypnosis or psychological testing. Explicit and possibly implicit memory under general anesthesia may result in long-term psychological problems such as anxiety, flashbacks, and sleep disturbances up to post traumatic stress disorder (PTSD). Litigation may also result *(Ghoneim, 2000).*

General anesthesia for caesarean section (CS) is traditionally considered a high risk procedure for awareness

where the lack for sedative premedications, low inspired concentrations for volatile agents and withholding opioids until after fetal delivery; all of which contribute to the risk of awareness (*Tsai et al, 2001*).

The incidence for awareness in obstetric population is reported to be 0.4% compared to 0.1% to 0.2% in the general anesthetic population *(Ghoneim, 2000)*.

A move away from the rigid anesthetic protocols, which were designed to limit drug transmission across the placenta, has reduced the incidence of awareness during CS to approximately 0.26%. Nevertheless, it is remains an undesirable complication with potential for the development of PTSD. Thus the objectives of general anesthesia for CS are to keep the mother and fetus adequately oxygenated while limiting fetal drug transmission and maintaining maternal comfort *(Robins and Lyons, 2009)*.

The bispectral index, an EEG derived variable for measuring depth of anesthesia, has been shown to be a reliable indicator of the level of consciousness and thus it is useful in

measuring the hypnotic component of the anesthetic state. The bispectral index has also been shown to be a useful aid for titration of inhaled anesthetics in patients undergoing CS, to insure maternal hypnosis without compromising fetal outcome. BIS index values between 40 and 60 have been recommended to prevent awareness and postoperative recall in CS *(Yeo and Lo, 2002).*

REVIEW OF LITERATURE

Memory and Awareness

Intraoperative recall of awareness is defined as the unexpected, undesirable patient wakefulness during general anesthesia and the subsequent conscious recollection of events, feelings, or sensations specific to that period *(Rungreungvanich et al, 2005).*

Anesthesia awareness usually occurs when the patient is paralyzed with muscle relaxants but hasn't had enough general anesthetic or analgesic to prevent consciousness, or more importantly the sensation of pain and the recall of events. In this situation, the patient may be aware of the pain of surgery, as well as other discomforts as the endotracheal tube. He may also be aware of sounds or conversation in the operating room *(Jones, 1994).*

A patient who is paralyzed but awake will usually have a functioning autonomic nervous system which will result in signs such as increased heart rate and blood pressure (tachycardia & hypertension), as well as pupillary dilatation (mydriasis), sweating, lacrimation in response to pain. Therefore, even though the patients may not be able to directly signal their distress, there are clinical signs of awareness which would be expected to pick up *(Merikle and Rondi, 1993)*.

Definition of Memory:

Memory is one of the activities of the human mind, much studied by cognitive psychology. It is the capacity to retain an impression of past experiences. It was defined by *Lefrancois (1995)* as the availability of information and the ability to retrieve it and the previously acquired skills.

Memory is also defined as a set of active processes that encode and store information and rearrange it with