

ISOLATION OF SOME CHEMICAL CONSTITUENTS OF TWO *TERMINALIA* SPECIES AND THEIR EVALUATION AS ANTIOXIDANT AND CYTOTOXIC AGENTS

A thesis submitted in partial fulfillment Of

The requirements for the degree of Master of Science

By

Asmaa Salah El Din Mohamed

Theodor Bilharz Research Institute

Professor Dr. Maher A. Mahmoud Professor of Organic Chemistry (*D.Sc.*) Faculty of Science, Ain Shams University **Professor Dr. Laila A. Refahy** Professor of Medicinal Chemistry Theodor Bilharz Research Institute

Professor Dr. Samir M. El Amin Professor of Medicinal Chemistry Theodor Bilharz Research Institute

> Faculty of Science Ain Shams University 2013

ISOLATION OF SOME CHEMICAL CONSTITUENTS OF TWO *TERMINALIA* SPECIES AND THEIR EVALUATION AS ANTIOXIDANT AND CYTOTOXIC AGENTS

By

Asmaa Salah El Din Mohamed

THESIS ADVISORS

APROVAL

1- Professor Dr. Maher A. Mahmoud

Professor of Organic Chemistry (*D.Sc.*) Faculty of Science, Ain Shams University

2- Professor Dr. Laila A. Refahy

Professor of Medicinal Chemistry Theodor Bilharz Research Institute

3- Professor Dr. Samir M. El Amin

Professor of Medicinal Chemistry Theodor Bilharz Research Institute

Head of Chemistry Department

ACKNOWLEDGEMENT

First of all, thanks to ALLAH to whom I relate my success achieving in any work in my life.

My deep thanks and everlasting gratitude goes to *prof. Dr. Maher Abdel Aziz El-Hashash*, Professor of Organic Chemistry (D.Sc.), Faculty of Science, Ain Shams University, for his interest, encouragement, and advice during the progress of the work as well as revision of the thesis at all.

I would like also to thank *prof. Dr. Laila Abd El-Ghany Refahy*, professor of Medicinal Chemistry, Department of Medicinal chemistry and biochemistry, Theodor Bilharz Institute, for his continuous and valuable supervision, patience guidance, expert labors advice which are altogether beyond what I could expect.

Also my deep thanks and gratitude to *prof. Dr. Samir El- Amin* professor of Medicinal Chemistry for his encouragement.

My warm thanks are expressed to *Dr. Amal Mohamed Saad*, Lecturer of Medicinal Chemistry, Department of Medicinal chemistry and biochemistry, Theodor Bilharz Institute, for great help and facilities provided for producing this work.

Greatful thanks are to *Dr. Alia A. Mahmoud*, Lecturer of Medicinal Chemistry, Department of Medicinal chemistry and biochemistry, Theodor Bilharz Institute, for her valuable support. My heartfelt thanks are extended to my colleagues in Medicinal Chemistry Department, *Dr. Mosad A.Ghareeb* and *Dr. Maha El Shazly* for their friendly cooperation.

Finally, my deep thanks and gratitude to my family especially my parents for encouragement and loving me that much.

CONTENTS

Title	Page
ACKNOWLEDGMENT	
LIST OF TABLES	
LIST OF FIGURES	
SUMMARY	Ι
AIM OF THE WORK	
INTRODUCTION	1
LITERATURE REVIEW	4
Importance of Medicinal Plants	5
Free Radicals	5
Source of free radicals	6
Oxidative stress	7
Antioxidants	9
Natural antioxidants	10
Antioxidant Mechanism of Phenolic Compounds	11
Influence of structure	14
Plants having antioxidant	16
Cancer	17
Cancer risk factor	18

Type of cancer classified by body system	18
Treatment of cancer	19
Complementary and alternative medicine	20
Plants having cytotoxic effects	21
Terminalia	33
Chemical constituents of <i>Terminalia</i>	33
Terminalia arjuna	45
Description of Terminalia arjuna	45
Ethnic uses of Terminalia arjuna	46
Phytoconstituents of Terminalia arjuna	49
Terminalia bellerica	62
Phytoconstituents of <i>Terminalia bellerica</i> and their pharmacological activity	62
Materials and Methods	68
Chromatographic isolation and identification of certain	70
chemical constituents of <i>Terminali</i> a	79
Antioxidant and cytotoxic activity of <i>Terminalia</i>	135
REFERENCES	161
ARABIC SUMMARY	i

LIST OF TABLES

LIST OF TABLES

Table No	Title	Page
Table 1	Radical and non – radical oxygen metabolites.	8
Table 2	The most frequently encountered natural antioxidants in plants	10
Table 3	Phytoconstituents isolated from <i>T. Arjuna</i> and their pharmacological activity	49-58
Table 4	Elution systems of polyamide CC. of n-BuOH extract of <i>T</i> . <i>A</i> .	82
Table 5	¹ H-NMR and ¹³ C-NMR spectral data of compound (1)	85
Table 6	¹ H-NMR and ¹³ C-NMR spectral data of compound (2)	91
Table 7	¹ H-NMR and ¹³ C-NMR spectral data of compound (3)	96
Table 8	Elution systems of Silica gel CC. of petroleum ether extract of <i>T. A.</i>	99
Table 9	Percentage composition of leaves essential oil of <i>Terminalia</i> <i>arjuna</i> .(fraction 1)	101- 102
Table 10	Percentage composition of leaves essential oil of Terminaliaarjuna .(fraction 2)	104- 105
Table 11	¹ H-NMR and ¹³ C-NMR spectral data of compound (4)	109
Table 12	Elution systems of polyamide CC. of n-BuOH extract of <i>T. B</i> .	115
Table 13	¹ H-NMR and ¹³ C-NMR spectral data of compound (5)	119- 120
Table 14	¹ H-NMR and ¹³ C-NMR spectral data of compound (7)	106
Table 15	Total phenolic content (TPC) of the different extracts of <i>Terminalia Arjuna</i>	136

Table 16	Total phenolic content (TPC) of the different extracts of <i>Terminalia Bellerica</i>	137
Table 17	Total Flavonoids content (TFC) of the different extracts of <i>Terminalia Arjuna</i>	138
Table 18	Total Flavonoids content (TFC) of the different extracts of <i>Terminalia Bellerica</i>	139
Table 19	Free radical scavenging potential (DPPH) of the different extracts of <i>Terminalia Arjuna</i>	142
Table 20	Free radical scavenging potential (DPPH) of the different extracts of <i>Terminalia Bellerica</i>	143
Table 21	The total antioxidant capacity of the different extracts of <i>Terminalia Arjuna</i> and <i>Terminalia Bellerica</i>	145
Table 22	Mortality of Brine Shrimp larvae after 24 hrs of exposure to different concentrations of 70% methanol extract of <i>T.A.</i>	147
Table 23	Mortality of Brine Shrimp larvae after 24 hrs of exposure to different concentrations of 70% acetone extract of <i>T.A.</i>	148
Table 24	Mortality of Brine Shrimp larvae after 24 hrs of exposure to different concentrations of diethyl ether extract of <i>T.A.</i>	149
Table 25	Mortality of Brine Shrimp larvae after 24 hrs of exposure to different concentrations of petroleum ether extract of <i>T.A.</i>	150
Table 26	Mortality of Brine Shrimp larvae after 24 hrs of exposure to different concentrations of methylene chloride extract of <i>T.A.</i>	151

Table 27	Mortality of Brine Shrimp larvae after 24 hrs of exposure to different concentrations of ethyl acetate extract of <i>T.A.</i>	152
Table 28	Mortality of Brine Shrimp larvae after 24 hrs of exposure to different concentrations of butanol extract of <i>T.A.</i>	153
Table 29	Mortality of Brine Shrimp larvae after 24 hrs of exposure to different concentrations of 70% methanol extract of <i>T.B.</i>	154
Table 30	Mortality of Brine Shrimp larvae after 24 hrs of exposure to different concentrations of diethyl ether extract of <i>T.B.</i>	155
Table 31	Mortality of Brine Shrimp larvae after 24 hrs of exposure to different concentrations of Petroleum ether extract of <i>T.B.</i>	156
Table 32	Mortality of Brine Shrimp larvae after 24 hrs of exposure to different concentrations of methylene chloride extract of <i>T.B.</i>	157
Table 33	Mortality of Brine Shrimp larvae after 24 hrs of exposure to different concentrations of ethyl acetate extract of <i>T.B.</i>	158
Table 34	Mortality of Brine Shrimp larvae after 24 hrs of exposure to different concentrations of butanol extract of <i>T.B.</i>	159
Table 35	Cytotoxic activity of different extracts of Terminalia Arjuna.	160
Table 36	Cytotoxic activity of different extracts of Terminalia bellerica.	160

LIST OF FIGURES

LIST OF FIGURES

Figure No	Title	Page
Figure 1	Terminalia Arjuna Photograph.	79
Figure 2	A flow sheet diagram describing extraction and fractionation of <i>Terminalia Arjuna</i> Leaves.	81
Figure 3	Scheme of Isolation of n-BuOH Extract from <i>Terminalia arjuna</i> Leaves.	83
Figure 4	IR spectrum of compound 1	86
Figure 5	¹ H-NMR (DMSO-d6) spectra of compound 1	87
Figure 6	¹³ C-NMR (DMSO-d6) spectra of compound 1	88
Figure 7	UV (Methanol) spectra of compound 1	89
Figure 8	¹ H-NMR (DMSO-d6) spectra of compound 2	92
Figure 9	¹³ C -NMR (DMSO-d6) spectra of compound 2	93
Figure 10	IR spectra of compound 2	94
Figure 11	¹ H-NMR (DMSO-d6) spectra of compound3	97
Figure 12	IR spectrum of compound 3	98
Figure 13	GC/MS spectrum of essential oil (fraction 1)	103
Figure 14	GC/MS spectrum of essential oil (fraction 2)	106
Figure15	UV (Methanol) spectra of compound 4	110
Figure 16	¹ H-NMR (DMSO-d6) spectra of compound 4	111
Figure 17	¹³ C-NMR (DMSO-d6) spectra of compound 4	112
Figure 18	Terminalia Bellerica photograph.	113

Figure 19	Scheme of Isolation of n-BuOH Extract from <i>Terminalia arjuna</i> Leaves.	116
Figure 20	¹ H-NMR (DMSO-d6) spectra of compound (5)	121
Figure 21	¹³ C-NMR (DMSO-d6) spectra of compound (5)	122
Figure 22	UV spectra of compound (5)	123
Figure 23	¹ H-NMR (DMSO-d6) spectra of compound (6)	126
Figure 24	¹³ C-NMR (DMSO-d6) spectra of compound (6)	127
Figure 25	¹ H-NMR (DMSO-d6) spectra of compound (7)	132
Figure 26	¹³ C-NMR (DMSO-d6) spectra of compound (7)	133
Figure 27	UV spectra of compound (7)	134
Figure 28	Mortality of Brine Shrimp larvae after 24 hrs of exposure to different concentrations of 70% methanol extract of <i>T.A.</i> <i>and Log dose</i>	147
Figure 29	Mortality of Brine Shrimp larvae after 24 hrs of exposure to different concentrations of 70% acetone extract of <i>T.A.</i> <i>and Log dose</i>	148
Figure 30	Mortality of Brine Shrimp larvae after 24 hrs of exposure to different concentrations of diethyl ether extract of <i>T.A.</i> <i>and Log dose</i>	149
Figure 31	Mortality of Brine Shrimp larvae after 24 hrs of exposure to different concentrations of petroleum ether extract of <i>T.A. and Log dose</i>	150
Figure 32	Mortality of Brine Shrimp larvae after 24 hrs of exposure to different concentrations of methylene chloride extract of <i>T.A. and Log dose</i>	151

Figure 33	Mortality of Brine Shrimp larvae after 24 hrs of exposure to different concentrations of ethyl acetate extract of <i>T.A.</i> <i>and Log dose</i>	152
Figure 34	Mortality of Brine Shrimp larvae after 24 hrs of exposure to different concentrations of butanol extract of <i>T.A. and</i> <i>Log dose</i>	153
Figure 35	Mortality of Brine Shrimp larvae after 24 hrs of exposure to different concentrations of 70% methanol extract of <i>T.B.</i> <i>and Log dose</i>	154
Figure36	Mortality of Brine Shrimp larvae after 24 hrs of exposure to different concentrations of diethyl ether extract of <i>T.B.</i> <i>and Log dose</i>	155
Figure37	Mortality of Brine Shrimp larvae after 24 hrs of exposure to different concentrations of Petroleum ether extract of <i>T.B.and Log dose</i>	156
Figure38	Mortality of Brine Shrimp larvae after 24 hrs of exposure to different concentrations of methylene chloride extract of <i>T.B.and Log dose</i>	157
Figure39	Mortality of Brine Shrimp larvae after 24 hrs of exposure to different concentrations of ethyl acetate extract of <i>T.B.</i> <i>and Log dose</i>	158
Figure40	Mortality of Brine Shrimp larvae after 24 hrs of exposure to different concentrations of butanol extract of <i>T.B. and</i> <i>Log dose</i>	159

SUMMARY