

AIN SHAMS UNIVERSITY Faculty of Computer and Information Sciences Scientific Computing Department

3D Object Retrieval

Thesis submitted to the Department of Scientific Computing Faculty of Computer and Information Sciences Ain Shams University

In partial fulfillment of the requirements for the degree of Master of Computer and Information Sciences

By

Hanan Mohamed Rashad Amin ElNaghy

B.Sc. in Computer and Information Sciences Teaching Assistant, Scientific Computing Department Faculty of Computer and Information Sciences Ain Shams University Cairo, Egypt

Under the Supervision of

Prof. Dr. Mohammed Essam Khalifa

Professor, Basic Sciences Department Faculty of Computer and Information Sciences Ain Shams University

Dr. Safwat Hamad

Lecturer, Scientific Computing Department Faculty of Computer and Information Sciences Ain Shams University

Cairo - 2014

Scientific Computing Department Faculty of Computer & Information Sciences Ain Shams University

3D Object Retrieval

Thesis submitted to the Department of Scientific Computing Faculty of Computer and Information Sciences Ain Shams University

In partial fulfillment of the requirements for the degree of Master of Computer and Information Sciences

By

Hanan Mohamed Rashad Amin ElNaghy

Approved by the discussion committee:

Prof. Dr. Mohammed Essam Khalifa Professor, Department of Basic Sciences

Member & Supervisor

Faculty of Computer and Information Sciences, Ain Shams University

L.A.C.LA

Prof. Dr. Magdy Aboul-Ela Vice President of Sadat Academy for Management Sciences Professor of Computer Sciences and Information Systems

Member

Prof. Dr. Amr Ahmed Anwar Ali Badr Professor of Computer Science, Department of Computer Science Faculty of Computers and Information, Cairo University

Cairo - 2014

Member

Scientific Computing Department Faculty of Computer and Information Sciences Ain Shams University

Acknowledgement

In the name of Allah, the Most Gracious, the Most Merciful. Alhamdulillah, all praise be to Allah for His blessings, and for the strength He gave me to complete this thesis.

> **"فخذ ما آتيتك وكن من الشاكرين"** [سورة الأعراف - آية 144] "So take what I have brought you, and be of the thankful" [Al-A'raf – 144]

It would not have been possible to complete this thesis without the help and support of the kind people around me, to only some of whom it is possible to give particular mention here.

First and foremost, I would like to express my deep gratitude and respect to Prof. Dr. Essam Khalifa for his continuous support in all stages of this thesis. He is a man of vision who deserves more than acknowledgment for his professional expertise and insightful discussions since the early stages of my undergraduate education. Simply, I am ever indebted to his believing in me and constantly pushing me to give the best of me.

My sincerest gratitude is for my supervisor, guide and friend, Dr.Safwat Hamad, who has supported me throughout my thesis with his patience and knowledge, whilst allowing me room to work my own way. He gave me the confidence to explore my research interests and the guidance to avoid getting lost in my exploration. I attribute my achievement to his unfailing encouragement and effort. Without him this thesis would not have been completed. One simply could not wish for a better or friendlier supervisor. Additionally, I wish to thank Dr.Amal Khalifa for her valuable comments that helped me structure the content of this thesis.

Last but not the least; I would like to express my appreciation to Dr.Howaida Abdelfattah, for her continuous care and understanding of the hardships I have encountered during my research.

Dedication

I dedicate this thesis to my great mother: words cannot express how grateful I am for your unconditional love, sympathy and support throughout my whole life. I could not have completed this thesis without you and I wish I could make you proud of me.

I also dedicate it to my supportive and encouraging husband, whose faithful support during the final stages of this thesis is so appreciated. He has shared most of the ups and downs of this thesis and his belief in what I have been doing has been stronger than my own on many occasions. Last but not the least; I dedicate this thesis to my little sweet angel Mariam: her innocent smile and her humorous soul give me the power to bypass all my difficulties through the long journey of accomplishing this thesis.

Thank you all my small family for your love, support, patience, and numerous sacrifices throughout my academic career. This thesis and the pursuit of my goals would not have been possible without you.

Abstract

The advent of the World Wide Web as well as the rapid evolution in graphics hardware and software development, has given the opportunity to experience applications using 3D models not only to specialized users of the scientific community and the industrial domain, but also to common users. The number of available 3D models in digital libraries as well as domain-specific databases has increased substantially. 3D models are currently being used in a wide variety of vital fields. For example, the medical industry uses detailed 3D models of organs, the science sector uses 3D models as highly detailed models of chemical compounds, the architecture industry demonstrates proposed buildings and landscapes through Software Architectural 3D Models in addition to the engineering community which uses 3D models to design new devices, vehicles and structures. In recent decades the earth science community has also started to construct 3D geological models as a standard practice.

Though the number of 3D models keeps on increasing, 3D models are time and effort consuming to build. A more convenient and profitable approach is the use of existing 3D models instead of creating 3D models from scratch. Therefore, the challenge has shifted from "How can we generate 3D models?" to "How can we search 3D models?"

3D model search and retrieval could be performed by using a textual description of the user's target which identifies the semantic meaning of the desired model or class of models. In this case, the user would explicitly describe the target, but such an approach is sensitive to the user's subjectivity factor which is not necessarily in agreement with the textual information which has been annotated to the target. Furthermore, this method is problematic as it requires individually annotating every model of a repository which is impractical due to the huge and continuously increasing number of existing 3D models.

Therefore, content-based 3D object retrieval methods are suited for search since they do not require any annotation while. They only require robust 3D shape feature extraction that can be applied automatically. In these methods, a shape descriptor is computed which represents the model and is consequently used at the matching stage. When 3D model comparison is performed, it is required that shape descriptors are compact in size, discriminative as well as invariant under geometrical transformations, deformations and possible perturbations. Thereafter, the discriminative power of these methods is highly affected by these aspects, while extraction and comparison time also affect the performance, especially for real-time applications.

Recently, a major effort of the research community has been devoted to the creation of accurate and efficient content based 3D object retrieval algorithms. Nevertheless, the problem remains challenging and it is far from being completely solved due to the lack of unique measure that defines shape similarity between 3D models. Work on shape representations and matching is based on a trade-off between conciseness and expensiveness of the chosen scheme.

In this thesis, we present a robust and efficient content-based 3D object retrieval technique after presenting a comprehensive survey of different methods proposed in literature. The key idea of the proposed technique is the synergy between Heat Kernel Signatures (HKS) (Sun et al., 2009) and Bag of Features (BoF) paradigm (Harris, 1954), such that the problem of matching different 3D models is reduced to simply matching their corresponding bags of features vectors which act as their representative shape descriptors. First, the HKS computation phase encodes each point in a given 3D model by a feature vector describing its local and global geometric properties at different time values. Next during the feature point detection and description phase, HKS critical points are captured in order to constitute an initial set of feature points. Then, an innovative filtering technique is applied on this initial set in order to carefully pick the most stable significant feature points, resulting in a compact set of points covering the whole surface of a given 3D model uniformly. This concise set of feature points constitutes the final feature space required for constructing the geometric vocabulary that holds the most distinct geometric words. It should be pointed out that, each point belonging to such descriptor space is associated with a compact and informative HKS-based feature descriptor vector. Afterwards through the BoF phase, each point from a given 3D model is associated to the nearest visual word in the given geometric vocabulary, which has been preliminary built using K-means clustering technique in the descriptor space. Then, the 3D model is represented by a BoF distribution representing a histogram of occurrences of the visual words all over the model. Eventually, the problem of matching 3D models is reduced to matching their corresponding significant BoF descriptors.

Through our extensive evaluation experiments, we conclude that the proposed technique is quite effective for the purpose of 3D Object Retrieval, showing very high

retrieval accuracy and descriptive power. It achieves state of the art results on SHREC 2011 dataset; a public well known benchmark of non-rigid 3D models. The proposed descriptor is not only invariant against different kinds of deformations and transformations, but also can handle 3D models under perturbations of noise. Moreover, it is significant that the proposed technique is computationally efficient.

Furthermore, we compare the proposed technique with other state of the art methods recently proposed in literature. The proposed technique clearly outperforms all other competitive methods, providing quite good results almost always better than other methods regarding different standard evaluation metrics.

In conclusion, the significant contributions of our work can be summarized in introducing a compact, easily computed and informative HKS-based feature vector for point feature description, applying a robust filtering technique for reducing time and space complexity of clustering descriptor space required for geometric vocabulary construction, encoding 3D models with a compact highly discriminative feature descriptor and finally attaining high retrieval results invariant against noise and different kinds of both deformations and transformations.

In the future, we look forward to exploring other applications in the area of 3D shape analysis. In addition to adapting our technique so that it can be applied in other 3D applications such as partial matching, segmentation, pose estimation and matching specific domain 3D models.

Table of Contents

Acknov	vledg	jement	I
Dedica	tion		Ш
Abstra	ct		
Table o	f Co.	storte	VI
Tuble	<i>y</i> cor	nents	VI
List of I	Figur	es	IX
List of	Table	S	XII
Chapte	r 1	Introduction	2
1.1	Mc	tivation and Problem Statement	2
1.2	Res	search Objectives	3
1.3	The	esis Overview	4
Chapte	er 2	Background Overview	7
2.1	3D	Content-Based Retrieval	7
2.2	3D	Object Representation	9
2.2		Point Based Representations	
2.2	2.2	Surface (Boundary) Representations	
2.2	2.3	Volumetric (Solid) Representations	
2.3	Qu	ery Types	12
2.4	3D	Object Retrieval Benchmarks	13
2.5	SH	REC	16
2.6	3D	Object Retrieval Framework	17
2.7		Object Retrieval Aspects	
2.7		3D Object Representation Requirements	
2.7	7.2	Efficiency	
2.7	7.3	Discriminative Power	19
2.7	7.4	Robustness and Sensitivity	20
2.7	7.5	Pose Normalization	20
2.7	7.6	Partial Matching	
2.8	Eva	luation Metrics	21
2.8	3.1	Precision	

2.8.	2 Recall	24
2.8.	3 Precision-Recall Plot	24
2.8.	4 Nearest Neighbour (NN)	25
2.8.	5 First Tier (FT)	25
2.8.	6 Second Tier (ST)	25
2.8.		
2.8.		
2.8.	9 Mean Average Precision (MAP)	26
Chapter	3 Survey of 3D Object Retrieval Methods	29
3.1	Introduction	29
3.2	Proposed Taxonomy for 3D Object Retrieval Methods	31
3.2.	1 View Based Methods	31
3.2.	2 Graph Based Methods	41
3.2.	3 Geometry Based Methods	50
3.2.		
3.2.	5 General Techniques	69
3.3	Comparison	71
3.4	Summary	75
Chapter	4 Heat Kernel Signature	77
4.1	Introduction	
		//
4.2	Mathematical Details	
4.2 4.3		79
	Mathematical Details	79 81
4.3	Mathematical Details Discrete Environment	79 81 83
4.3 4.4	Mathematical Details Discrete Environment Laplace-Beltrami Operator Computation Heat Kernel Signature Properties	79 81 83 86
4.3 4.4 4.5	Mathematical Details Discrete Environment Laplace-Beltrami Operator Computation Heat Kernel Signature Properties Intrinsic	79 81 83 86 86
4.3 4.4 4.5 <i>4.5</i> .	Mathematical Details Discrete Environment Laplace-Beltrami Operator Computation Heat Kernel Signature Properties Intrinsic 2 Informative	
4.3 4.4 4.5 <i>4.5.</i> 4.5.	Mathematical Details Discrete Environment Laplace-Beltrami Operator Computation Heat Kernel Signature Properties Intrinsic Informative	79 81 83 86 86 86 86 86 86
4.3 4.4 4.5 4.5. 4.5. 4.5.	Mathematical Details Discrete Environment Laplace-Beltrami Operator Computation Heat Kernel Signature Properties 1 Intrinsic 2 Informative 3 Multi-Scale 4 Stable	79 81 83 86 86 86 86
4.3 4.4 4.5 4.5. 4.5. 4.5. 4.5.	Mathematical Details Discrete Environment Laplace-Beltrami Operator Computation Heat Kernel Signature Properties 1 Intrinsic 2 Informative 3 Multi-Scale 4 Stable	
4.3 4.4 4.5 4.5. 4.5. 4.5. 4.5. 4.5.	Mathematical Details Discrete Environment Laplace-Beltrami Operator Computation Heat Kernel Signature Properties 1 Intrinsic 2 Informative 3 Multi-Scale 4 Stable 5 Other properties	
4.3 4.4 4.5 4.5. 4.5. 4.5. 4.5. 4.5.	Mathematical Details Discrete Environment Laplace-Beltrami Operator Computation Heat Kernel Signature Properties Intrinsic Informative Multi-Scale Stable Merging HKS descriptor with BoF paradigm Summary	
4.3 4.4 4.5 4.5. 4.5. 4.5. 4.5. 4.6 4.7 Chapter	Mathematical Details Discrete Environment Laplace-Beltrami Operator Computation Heat Kernel Signature Properties Intrinsic Informative Multi-Scale Stable Stable Merging HKS descriptor with BoF paradigm Summary	
4.3 4.4 4.5 4.5. 4.5. 4.5. 4.5. 4.5 4.6 4.7 Chapter 5.1	Mathematical Details Discrete Environment Laplace-Beltrami Operator Computation Heat Kernel Signature Properties Intrinsic Informative Multi-Scale	
4.3 4.4 4.5 4.5. 4.5. 4.5. 4.5. 4.6 4.7 Chapter	Mathematical Details Discrete Environment Laplace-Beltrami Operator Computation Heat Kernel Signature Properties Intrinsic Informative Multi-Scale Stable Stable Merging HKS descriptor with BoF paradigm Summary	

6.1 Introduction 123 6.2 3D Dataset 123 6.3 Environment and Parameters Settings 125 6.4 Parameters Influence 127 6.4.1 Number of Eigenvalues and Eigenfunctions (k) 127 6.4.2 HKS-Based d-Dimensional Feature Descriptor (p(x)) 131 6.4.3 Vocabulary size 136 6.4.4 Hard versus Soft Vector Quantization 140 6.4.5 Type of Distance Function used for Matching 142 6.5 Retrieval Results 143 6.6 Categories Evaluation 149 6.7 Noise Analysis 154 6.8 Timing Data 157 6.9 Comparison 160 6.9.1 Compared Methods 160 6.9.2 Comparison Results 167 6.10 Summary 170	5.4	Feature Point Detection and Description	
5.5 Bag of Features 110 5.5.1 Vocabulary Construction 111 5.5.2 3D Object Representation 112 5.6 Matching 115 5.7 Summary 120 Chapter 6 Experimental Results and Evaluation 6.1 Introduction 123 6.2 3D Dataset 123 6.3 Environment and Parameters Settings 125 6.4 Parameters Influence 127 6.4.1 Number of Eigenvalues and Eigenfunctions (k) 127 6.4.1 Number of Eigenvalues and Eigenfunctions (k) 127 6.4.2 HKS-Based d-Dimensional Feature Descriptor (p(x)) 131 6.4.3 Vocabulary size 136 6.4.4 Hard versus Soft Vector Quantization 140 6.5 Retrieval Results 143 6.6 Categories Evaluation 149 6.7 Noise Analysis 154 6.8 Timing Data 157 6.9 Comparison 160 6.9.1 Compared Methods 167 6.9.2	5.4.	1 Feature Detection	103
5.5.1 Vocabulary Construction. 111 5.5.2 3D Object Representation. 112 5.6 Matching. 115 5.7 Summary. 120 Chapter 6 Experimental Results and Evaluation 123 6.1 Introduction. 123 6.2 3D Dataset 123 6.3 Environment and Parameters Settings 125 6.4 Parameters Influence 127 6.4.1 Number of Eigenvalues and Eigenfunctions (k) 127 6.4.2 HKS-Based d-Dimensional Feature Descriptor (p(x)) 131 6.4.3 Vocabulary size 136 6.4.4 Hard versus Soft Vector Quantization 140 6.4.5 Type of Distance Function used for Matching 142 6.5 Retrieval Results 143 6.6 Categories Evaluation 149 6.7 Noise Analysis 154 6.8 Timing Data 157 6.9 Comparison Results 160 6.9.1 Compared Methods 160 6.9.2 Comparison Results 167	5.4.	2 Feature Description	106
5.5.2 3D Object Representation 112 5.6 Matching 115 5.7 Summary 120 Chapter 6 Experimental Results and Evaluation 6.1 Introduction 123 6.2 3D Dataset 123 6.3 Environment and Parameters Settings 125 6.4 Parameters Influence 127 6.4.1 Number of Eigenvalues and Eigenfunctions (k) 127 6.4.1 Number of Eigenvalues and Eigenfunctions (k) 127 6.4.2 HKS-Based d-Dimensional Feature Descriptor (p(x)) 131 6.4.3 Vocabulary size 136 6.4.4 Hard versus Soft Vector Quantization 140 6.4.5 Type of Distance Function used for Matching 143 6.4.6 Categories Evaluation 149 6.7 Noise Analysis 157 6.8 Timing Data 157 6.9 Comparison 160 6.9.1 Compared Methods 160 6.9.2 Comparison Results 167 6.10 Summary 170 <t< td=""><td>5.5</td><td>Bag of Features</td><td></td></t<>	5.5	Bag of Features	
5.6 Matching. 115 5.7 Summary. 120 Chapter 6 Experimental Results and Evaluation 6.1 Introduction. 123 6.2 3D Dataset 123 6.3 Environment and Parameters Settings 125 6.4 Parameters Influence 127 6.4.1 Number of Eigenvalues and Eigenfunctions (k). 127 6.4.1 Number of Eigenvalues and Eigenfunctions (k). 127 6.4.2 HKS-Based d-Dimensional Feature Descriptor (p(x)) 131 6.4.3 Vocabulary size 136 6.4.4 Hard versus Soft Vector Quantization 142 6.4.5 Type of Distance Function used for Matching 142 6.4.5 Retrieval Results 143 6.6 Categories Evaluation 144 6.7 Noise Analysis 157 6.9 Comparison 160 6.9.1 Compared Methods 160 6.9.2 Comparison Results 167 6.10 Summary 170 Chapter 7 Conclusions and Future Works 173 </td <td>5.5.</td> <td>1 Vocabulary Construction</td> <td> 111</td>	5.5.	1 Vocabulary Construction	111
5.7 Summary .120 Chapter 6 Experimental Results and Evaluation 123 6.1 Introduction .123 6.2 3D Dataset .123 6.3 Environment and Parameters Settings .125 6.4 Parameters Influence .127 6.4.1 Number of Eigenvalues and Eigenfunctions (k) .127 6.4.2 HKS-Based d-Dimensional Feature Descriptor (p(x)) .131 6.4.3 Vocabulary size .136 6.4.4 Hard versus Soft Vector Quantization .142 6.5 Retrieval Results .143 6.6 Categories Evaluation .142 6.7 Noise Analysis .154 6.8 Timing Data .157 6.9 Comparison .160 6.9.2 Comparison Results .167 6.10 Summary .170 Chapter 7 Conclusions and Future Works .173 7.1 Conclusions .173	5.5.	2 3D Object Representation	112
Chapter 6Experimental Results and Evaluation1236.1Introduction1236.23D Dataset1236.3Environment and Parameters Settings1256.4Parameters Influence1276.4.1Number of Eigenvalues and Eigenfunctions (k)1276.4.2HKS-Based d-Dimensional Feature Descriptor (p(x))1316.4.3Vocabulary size1366.4.4Hard versus Soft Vector Quantization1406.5Retrieval Results1436.6Categories Evaluation1496.7Noise Analysis1546.8Timing Data1576.9Compared Methods1606.9.1Compared Methods1676.10Summary170Chapter 7Conclusions and Future Works1737.1Conclusions173	5.6	Matching	115
6.1 Introduction 123 6.2 3D Dataset 123 6.3 Environment and Parameters Settings 125 6.4 Parameters Influence 127 6.4.1 Number of Eigenvalues and Eigenfunctions (k) 127 6.4.2 HKS-Based d-Dimensional Feature Descriptor (p(x)) 131 6.4.2 HKS-Based d-Dimensional Feature Descriptor (p(x)) 131 6.4.3 Vocabulary size 136 6.4.4 Hard versus Soft Vector Quantization 140 6.4.5 Type of Distance Function used for Matching 142 6.5 Retrieval Results 143 6.6 Categories Evaluation 149 6.7 Noise Analysis 157 6.9 Comparison 160 6.9.1 Compared Methods 160 6.9.2 Comparison Results 167 6.10 Summary 170 Chapter 7 Conclusions and Future Works 173 7.1 Conclusions 173	5.7	Summary	120
6.2 3D Dataset 123 6.3 Environment and Parameters Settings 125 6.4 Parameters Influence 127 6.4.1 Number of Eigenvalues and Eigenfunctions (k) 127 6.4.2 HKS-Based d-Dimensional Feature Descriptor (p(x)) 131 6.4.2 HKS-Based d-Dimensional Feature Descriptor (p(x)) 131 6.4.3 Vocabulary size 136 6.4.4 Hard versus Soft Vector Quantization 140 6.4.5 Type of Distance Function used for Matching 142 6.5 Retrieval Results 143 6.6 Categories Evaluation 149 6.7 Noise Analysis 157 6.9 Comparison 160 6.9.1 Compared Methods 160 6.9.2 Comparison Results 167 6.10 Summary 170 Chapter 7 Conclusions and Future Works 173 7.1 Conclusions 173	Chapter	6 Experimental Results and Evaluation	123
6.3 Environment and Parameters Settings 125 6.4 Parameters Influence 127 6.4.1 Number of Eigenvalues and Eigenfunctions (k) 127 6.4.2 HKS-Based d-Dimensional Feature Descriptor (p(x)) 131 6.4.2 HKS-Based d-Dimensional Feature Descriptor (p(x)) 131 6.4.3 Vocabulary size 136 6.4.4 Hard versus Soft Vector Quantization 140 6.4.5 Type of Distance Function used for Matching 142 6.5 Retrieval Results 143 6.6 Categories Evaluation 149 6.7 Noise Analysis 154 6.8 Timing Data 157 6.9 Comparison 160 6.9.1 Compared Methods 167 6.10 Summary 170 Chapter 7 Conclusions and Future Works 173 7.1 Conclusions 173	6.1	Introduction	
6.4 Parameters Influence 127 6.4.1 Number of Eigenvalues and Eigenfunctions (k) 127 6.4.2 HKS-Based d-Dimensional Feature Descriptor (p(x)) 131 6.4.2 HKS-Based d-Dimensional Feature Descriptor (p(x)) 131 6.4.3 Vocabulary size 136 6.4.4 Hard versus Soft Vector Quantization 140 6.4.5 Type of Distance Function used for Matching 142 6.5 Retrieval Results 143 6.6 Categories Evaluation 149 6.7 Noise Analysis 154 6.8 Timing Data 157 6.9 Comparison 160 6.9.1 Compared Methods 160 6.9.2 Comparison Results 167 6.10 Summary 170 Chapter 7 Conclusions and Future Works 173 7.1 Conclusions 173	6.2	3D Dataset	
6.4.1 Number of Eigenvalues and Eigenfunctions (k) 127 6.4.2 HKS-Based d-Dimensional Feature Descriptor (p(x)) 131 6.4.3 Vocabulary size 136 6.4.4 Hard versus Soft Vector Quantization 140 6.4.5 Type of Distance Function used for Matching 142 6.5 Retrieval Results 143 6.6 Categories Evaluation 149 6.7 Noise Analysis 154 6.8 Timing Data 157 6.9 Comparison 160 6.9.1 Compared Methods 160 6.9.2 Comparison Results 167 6.10 Summary 170 Chapter 7 Conclusions and Future Works 173 7.1 Conclusions 173	6.3	Environment and Parameters Settings	
6.4.2 HKS-Based d-Dimensional Feature Descriptor (p(x)) 131 6.4.3 Vocabulary size 136 6.4.4 Hard versus Soft Vector Quantization 140 6.4.5 Type of Distance Function used for Matching 142 6.5 Retrieval Results 143 6.6 Categories Evaluation 149 6.7 Noise Analysis 154 6.8 Timing Data 157 6.9 Comparison 160 6.9.1 Compared Methods 160 6.9.2 Comparison Results 167 6.10 Summary 170 Chapter 7 Conclusions and Future Works 173 7.1 Conclusions 173	6.4	Parameters Influence	
6.4.3Vocabulary size1366.4.4Hard versus Soft Vector Quantization1406.4.5Type of Distance Function used for Matching1426.5Retrieval Results1436.6Categories Evaluation1496.7Noise Analysis1546.8Timing Data1576.9Comparison1606.9.1Compared Methods1606.9.2Comparison Results1676.10Summary170Chapter 7Conclusions and Future Works1737.1Conclusions173	6.4.	1 Number of Eigenvalues and Eigenfunctions (k)	127
6.4.4Hard versus Soft Vector Quantization1406.4.5Type of Distance Function used for Matching1426.5Retrieval Results1436.6Categories Evaluation1496.7Noise Analysis1546.8Timing Data1576.9Comparison1606.9.1Compared Methods1676.10Summary170Chapter 7Conclusions and Future Works7.1Conclusions173	6.4.	2 HKS-Based <i>d</i> -Dimensional Feature Descriptor $(p(x))$	
6.4.5Type of Distance Function used for Matching1426.5Retrieval Results1436.6Categories Evaluation1496.7Noise Analysis1546.8Timing Data1576.9Comparison1606.9.1Compared Methods1606.9.2Comparison Results1676.10Summary170Chapter 7Conclusions and Future Works7.1Conclusions173	6.4.	3 Vocabulary size	136
6.5Retrieval Results1436.6Categories Evaluation1496.7Noise Analysis1546.8Timing Data1576.9Comparison1606.9.1Compared Methods1606.9.2Comparison Results1676.10Summary170Chapter 7Conclusions and Future Works1737.1Conclusions173	••••		
6.6 Categories Evaluation 149 6.7 Noise Analysis 154 6.8 Timing Data 157 6.9 Comparison 160 6.9.1 Compared Methods 160 6.9.2 Comparison Results 167 6.10 Summary 170 Chapter 7 Conclusions and Future Works 173 7.1 Conclusions 173	-		
6.7 Noise Analysis 154 6.8 Timing Data 157 6.9 Comparison 160 6.9.1 Compared Methods 160 6.9.2 Comparison Results 167 6.10 Summary 170 Chapter 7 Conclusions and Future Works 7.1 Conclusions 173	6.5		
6.8 Timing Data	6.6	Categories Evaluation	149
6.9 Comparison 160 6.9.1 Compared Methods 160 6.9.2 Comparison Results 167 6.10 Summary 170 Chapter 7 Conclusions and Future Works 173 7.1 Conclusions 173	6.7	Noise Analysis	154
6.9.1 Compared Methods 160 6.9.2 Comparison Results 167 6.10 Summary 170 Chapter 7 Conclusions and Future Works 173 7.1 Conclusions 173	6.8	Timing Data	157
6.9.2 Comparison Results 167 6.10 Summary 170 Chapter 7 Conclusions and Future Works 173 7.1 Conclusions 173	6.9	Comparison	
6.10Summary	6.9.	1 Compared Methods	160
Chapter 7 Conclusions and Future Works 173 7.1 Conclusions	6.9.	2 Comparison Results	167
7.1 Conclusions173	6.10	Summary	
	Chapter	7 Conclusions and Future Works	173
7.2 Future Works176	7.1	Conclusions	
	7.2	Future Works	
References 177	Referen	ces	177

List of Figures

Figure 2.1:	Example of applications that use 3D objects	8
Figure 2.2:	Example of point clouds representing 3D models	9
Figure 2.3:	Example of triangular meshes representing a rabbit 3D model	
	with different detail levels	10
Figure 2.4:	Example of Mesh and Voxel Representations of a sphere	12
Figure 2.5:	Princeton 3D Model Search Engine	14
Figure 2.6:	3D Object Retrieval Framework	18
Figure 2.7:	Similar mugs oriented by principal axes in different ways	21
Figure 2.8:	Example of distance matrix computed for six given 3D models and a ranked list computed for one 3D model	
Figure 3.1:	3D Object Retrieval Methods' Taxonomy	32
Figure 3.2:	Silhouettes of a 3D model	34
Figure 3.3:	Depth buffer-based feature vector	36
Figure 3.4:	Extraction of the lightfield descriptor for a chair model	37
Figure 3.5:	Silhouette images of a chair	37
Figure 3.6:	Building a spin image as a histogram of distances α and β of points in some neighbourhood with respect to basis point <i>p</i>	29
Figure 3.7:	Selected spin images selected from a 3D models	
Figure 3.8:	Skeletal Graph based representation of shape	
Figure 3.9:	Skeletal graph matching with colours showing the node-to-node	
1.5010 3.5.	correspondence based upon the topology and radial distance	
	about the edge	43
Figure 3.10:	An illustration of the rank of a voxel during dilation	44
Figure 3.11:	Shape index values for some elementary shapes	55
Figure 3.12:	Mapping from object normals to the Gaussian sphere	57
Figure 3.13:	Shells and sectors as basic space decompositions for shape	
	histograms	61
Figure 3.14:	D2 shape distributions of five tanks and six cars	63
Figure 3.15:	Spherical harmonics do not distinguish models that differ by a	
	rotation of an interior part	67
Figure 3.16:	Filtering out geometrically similar, but semantically dissimilar,	
	models	69
Figure 4.1:	An RGB visualization of the first three components of the HKS	
	descriptor for different 3D shapes	78

Figure 4.2:	The Heat Kernel Signature function $K_t(x, x)$ for a small fixed t on the band Hemor, and trim star models	00
Figure 4.3:	the hand Homer, and trim-star models An RGB visualization of the HKS descriptor for different	05
	transformations of the human shape	88
Figure 4.4:	Examples of invariant image and shape retrieval	89
Figure 4.5:	Representation of Text and images using the Bag of Features	
	paradigm	
Figure 5.1:	Flow of the proposed 3D Object Retrieval Approach	
Figure 5.2:	Flow of HKS Computation Phase	101
Figure 5.3:	Heat Kernel Signatures (HKS) computed at 6 different time scales	100
	on a dog 3D model Heat Kernel Signatures (HKS) computed at 5 different time scales	102
Figure 5.4:	on a	102
Figure 5.5:	Critical Point <i>x</i> with 2-ring neighbourhood	
Figure 5.6:	Number of extracted feature points before and after applying	
	proposed filtering technique	107
Figure 5.7:	Number of extracted feature points before and after applying proposed filtering technique	108
Figure 5.8:	Hard Vector Quantization applied on a 3D model of a centaur	100
	with vocabulary size equals to 64	114
Figure 5.9:	Examples of bags of features computed for three different	
	deformations of a man 3D model	115
Figure 5.10:	Examples of bags of features computed for three different	
	deformations of a hand 3D model	116
Figure 5.11:	Examples of bags of features computed for two different 3D models	117
Figure 5.12:	Examples of bags of features computed for two partially similar	
U	3D models	118
Figure 6.1:	Examples of 3D models in SHREC 2011 database that is classified	
	into 30 categories	125
Figure 6.2:	Column Charts of the eight conducted experiments using	
	different values of k (number of computed eigenvalues)	129
Figure 6.3:	Line chart showing the relation between the average timing (in seconds) and the average storage (in MB) required for solving the	
	overall eigenproblem for a given model in the dataset versus the	
	number of k computed eigenvalues	131
Figure 6.4:	Column Charts of the four conducted experiments using different	
U -	selections of the <i>d</i> -Dimensional Feature Descriptor $(p(x))$	135

Figure 6.5:	Column Charts of the five conducted experiments using different values of v (vocabulary size)	137
Figure 6.6:	Line chart showing the relation between the timing (in seconds) required for clustering the feature space versus the vocabulary size (v) .	139
Figure 6.7:	Column Charts of the two conducted experiments using different ways of vector quantization for evaluating the feature distribution vector $\theta(x)$	
Figure 6.8:	Column Charts of the four conducted experiments using different distance functions	
Figure 6.9:	Sample of 3D object retrieval results	145
Figure 6.10:	Sample of 3D object retrieval results given queries with different deformations	147
Figure 6.11:	Sample of irrelevant retrieved matches ranked from 21 to 25 in the ranked list after the first 20 retrieved relevant matches	148
Figure 6.12:	Precision-recall curves computed for all categories within SHREC 2011 database	151
Figure 6.13:	within SHREC 2011 database	
Figure 6.14:	Sample of noise-corrupted 3D models	154
Figure 6.15:	Column Charts of conducted experiments using different noise levels	155
Figure 6.16:	Sample of retrieval results given corrupted models with noise level = 0.01	157
Figure 6.17:	Column Charts showing the retrieval performance of the compared methods against the proposed technique	169