GROWTH, YIELD AND QUALITY RESPONSE OF SOME BREAD WHEAT VARIETIES TO DIFFERENT SOWING DATES

By

MOHAMED MAHMOUD ISMAIL EITEMSAH

B.Sc. Agric. Sc. (Agronomy), Ain Shams Univ., $\gamma \cdot \cdot \gamma$ M.Sc. Agric. Sc. (Agronomy), Ain Shams Univ., $\gamma \cdot \cdot \gamma$

A thesis submitted in partial fulfillment

of

the requirements for the degree of DOCTOR OF PHILOSOPHY in

Agricultural Science (Agronomy)

Department of Agronomy Faculty of Agriculture Ain Shams University

Approval Sheet

GROWTH, YIELD AND QUALITY RESPONSE OF SOME BREAD WHEAT VARIETIES TO DIFFERENT SOWING DATES

By

MOHAMED MAHMOUD ISMAIL ELTEMSAH

B.Sc. Agric. Sc. (Agronomy), Ain Shams University, ۲۰۰۳ M.Sc. Agric. Sc. (Agronomy), Ain Shams University, ۲۰۰۹

This thesis for Ph. D. Degree has been approved by:

Dr. Abo Bakr Mohamed Ali Abo Warda Prof. of Wheat Production, Field Crops Res. Inst., Agric. Res. Center.

Dr. Abd El-Azim Ahmed Abd El-Gawad Prof. Emeritus of Agronomy, Fac. of Agric., Ain Shams Univ.

Dr. Mohamed Samy El-Habbal Prof. Emeritus of Agronomy, Fac. of Agric., Ain Shams Univ.

Date of Examination: $1 \cdot / 7 / 7 \cdot 17$

GROWTH, YIELD AND QUALITY RESPONSE OF SOME BREAD WHEAT VARIETIES TO DIFFERENT SOWING DATES

By

MOHAMED MAHMOUD ISMAIL ELTEMSAH

B.Sc. Agric. Sc. (Agronomy), Ain Shams Univ., ۲۰۰۳

M.Sc. Agric. Sc. (Agronomy), Ain Shams Univ., ۲۰۰۹

Under the supervision of:

Dr. Mohamed Samy El-Habbal

Prof. Emeritus of Agron., Dept. of Agron., Fac. of Agric., Ain Shams University (Principal Supervisor).

Dr. Mohamed Fergany

Lecture of Agron., Dept. of Agron., Faculty of Agric., Ain Shams Univ.

ABSTRACT

Mohamed Mahmoud Ismail Ismail: Growth, Yield and Quality Response of Some Bread Wheat Varieties to Different Sowing Dates. Unpublished Ph.D. Thesis, Department of Agronomy, Faculty of Agriculture, Ain Shams University, Y. Y.

The weight of blades was in highest values at heading stage followed by marked decreases by advancing the plants towards maturity stage. The substantial decreases in blades dry weight could be mainly attributed to differentiation of spikes and translocation of photosynthetic assimilates from vegetative to reproductive organs. The accumulation of dry matter in spikes was significantly the highest for wheat cultivar Gemmiza ⁹.

At harvest, Gemmiza $\,^{9}$ exhibited the tallest plants, highest spikes No/m^{$^{\gamma}$}, Main spike length and weight as well as grain No/main spike, grain , straw, biological and GCP yields, NUE, NRE GCPC, wet and dry gluten as well as gluten hydration percentage; test weight and $\,^{1}\cdots$ -grain weight. The studied traits were greatly affected by genetic make-up of the studied cultivars. It was found a positive relationship between GCPC, vitreosness, wet gluten content; test weight and $\,^{1}\cdots$ -grain weight.

Sowing wheat plants at r^{st} November exhibited statistically maximum dry weight of blades, stems + sheaths and spikes in comparable to early and late sowing in the season. It was generally noticed a remarkable reduction in percentage of blades and stems + sheaths by advancing the plants towards maturity stage. On the contrary, the highest spikes yield either absolute amount or percentage of total plant biomass was found when the plants were sown on r^{st} November.

Sowing on ^{1st} November had remarkable effect on rising NUE, NRE and NPE; yield components including plant height, spikes No/m^{*}, main spike length and weight as well as grain No/main spike that affected positively on grain, straw, biological and grain protein yields.

Test weight and `···-grain weight were significantly and gradually increased versus late sowing date of wheat till reached its maximum value by sowing on `st November. It was cleared that the dry weight of vegetative organs of wheat cultivar Gemmiza ⁴ exhibited significant maximum dry weight of blades, stems + sheaths and spikes under different growth stages. The dry matter accumulated in plant organs were markedly and significantly decreased versus early sowing date. On the other hand, the decrease in the above traits was monitored at late sowing but by less extent as compared to early sowing. The dry weight of spikes was markedly increased reaching their maximum values at physiological maturity stage.

The dry matter partitioning showed different trend. The percentage of blades and stems + sheaths was markedly decreased by advancing the plants from booting towards maturity stage. These decreases were corresponded with substantial increase in spikes percentage reaching their maximal values at physiological maturity stage.

At harvest, Gemmiza ⁹ exhibited maximum tallest plants, highest spikes No/plant; length, weight and grains No/main spike at all studied sowing dates reaching their maximum values when sown on ¹st November. The high performance of cultivar Gemmiza ⁹ in yield attributes was positively reflected on its yield and grain technological parameters.

The interaction between sowing dates and studied wheat cultivars affected significantly nitrogen physiological parameters. The data cleared that all the three studied cultivars gave maximum values of NUE, NRE, and NPE by sowing on 1^{st} November. Gemmiza 9 exhibited maximum value of NUE and NRE in comparison to the other two cultivars grown under the same date.

From the above mentioned data, the author recommended that bread wheat cultivar Gemmiza ⁹ was the best adapted cultivar and could be grown on ¹st November under the environmental conditions of Kaluobia Governorate.

Key words: Triticum aestivum, wheat growth, wheat yield, wheat grain quality, sowing date.

ACKNOWLEDGEMENT

The writer wishes to express his deep gratitude and sincere appreciation to **Prof. Dr. Mohamed Samy El-Habbal**, professor Emeritus of Agron. Dept., Fac. of Agric., Ain Shams Univ. for his supervision, valuable guidance, continuous encouragement, sincere efforts and helpful suggestion during the progress of this work and preparing the thesis.

My great and general thanks to **Dr. Mohamed Abd El-Hameed Fergany,** Lecturer of Agron. Dept., Fac. of Agric., Ain Shams Univ. for his supervision, encouragement, during the course of the work.

Thanks are also extended to all Faculty members of Agron. Dept., Fac. of Agric., Ain Shams Univ. for their interest and kind help during the course of this work.

Special gratitude and thanks to my mother, father, wife and all the family members for their offered encouragement.

CONTENTS

Title	Page
LIST OF TABLES	II
LIST OF FIGURES	V
LIST OF ABBREVIATION	VII
\. INTRODUCTION	١
۲. REVIEW OF LITERATURE	٣
۲, ۱. Effect of sowing date	٣
۲, ۱, ۱. Plant life cycle	٣
Y, Y. Y. Growth criteria	٤
۲, ۱. ۳. Yield and yield components	٩
۲, ۱, ٤. Grain quality	١٨
۲.۲. Genotypic differences	21
۲.۳. Effect of the interaction	21
۳. MATERIALS AND METHODS	۲۳
٤. RESULTS AND DISCUSSION	۲۸
٤, ۱. Meteorological data	۲۸
٤, ۲. Cultivar differences	۳.
٤,٢,١. Growth period	۳.
٤, ۲. ۲. Dry matter accumulation and partitioning	۳۱
٤, ۲. ٣. Yield and its attributes	۳٥
٤, ۲. ٤. Nitrogen physiological parameters	٤.
٤,٢.°. Grain quality	٤٢
۶, ۳. Response of wheat plants to sowing dates.	٤٦
٤,٣,١. Growth period	٤٦
٤,٣.٢. Dry matter accumulation and partitioning	٤٨
٤,٣.٣. Yield and yield components	07
٤,٣.٤. Nitrogen physiological parameters	०٦
٤,٣.°. Grain quality	٥٨
۶, ٤. Effect of the interaction between wheat cultivars and sowing dates	٦٠
٤,٤,١. Growth period	٦٠
ξ, ξ, Υ . Dry matter accumulation and partitioning	٦٣
٤,٤,٣. Yield and yield components	77
٤,٤,٤. Nitrogen physiological parameters	٦٩
٤,٤,°. Grain quality	٧١
•. SUMMARY	٧٤
۲. REFERENCES	٨٤
ARABIC SUMMARY	

LIST OF TABLES

No	Title	Page
١	Soil mechanical and chemical analysis of experimental farm.	
	Average data of $\gamma \cdot \gamma \cdot \gamma \cdot \gamma$ and $\gamma \cdot \gamma \cdot \gamma \cdot \gamma$ seasons	۲۳
۲	Monthly average minimum and maximum temperatures (°C)	
	during the two growing seasons	29
٣	Growth stage periods (days) from sowing to booting (B),	
	heading (H), physiological maturity (Phym) and plant life cycle	
	of wheat cultivars. Combined analysis of the two growing	
,	seasons	۳.
٤	Varietal differences in blades, stems + sheaths and spikes dry	
	weight (g/m [']) of wheat plants at booting (B), heading (H) and	
	physiological maturity (Phm) stages. Combined analysis of the	٣٢
0	two growing seasons Varietal differences in dry matter partitioning (% of total plant	, ,
•	dry weight) of stems + sheaths (T), blades (B) and spikes (S) of	
	wheat cultivars Giza 13^{A} , Sakha 9^{T} and Gemmiza 9. Combined	
	data of the two growing seasons	٣٤
٦	Yield components of wheat cultivars at harvest. Combined	
	analysis of the two growing seasons	٣٧
٧	Effect of wheat cultivars on grain, straw and biological yields	
	(kg/fad) and harvest indices (%). Combined analysis of the two	
	growing seasons	۳۸
٨	Varietal differences in nitrogen physiological parameters of	
	wheat plant. Combined data of the two growing seasons	٤١
٩	Varietal differences in some biochemical properties (% on dry	
	matter basis) of wheat grain. Data of $7 \cdot 1 \cdot / 7 \cdot 11$ growing	
	season	٤٢
۱.	Varietal differences in some technological properties of wheat	
	grain. Data of ۲۰۱۰/۲۰۱۱ growing	٤٤
	season	

۱۱	Effect of sowing date on period in days from planting to booting (B),	
	from B to heading (H), from H to physiological maturity (Phym),	
	from Phym to harvest and total plant life cycle. Combined analysis	
	of the two growing seasons	٤٧
۱۲	Total dry biomass of Blades, stems + sheaths and spikes dry	
	weight (g/m [']) of wheat plant at booting (B), heading (H) and	
	physiological maturity (Phm) stages as affected by sowing dates	
	during phynological stages of growth. Combined analysis of the	
	two growing seasons	٥.
۱۳	Dry matter partitioning (% of total plant dry weight) of stems +	
	sheaths (T), blades (B) and spikes (S) of wheat as affected by	
	sowing dates during phynological stages of growth. Combined	
	analysis of the two growing seasons	01
١٤	Effect of sowing dates on yield components of wheat plants at	
	harvest. Combined analysis of the two growing seasons	07
١٥	Effect of sowing dates on wheat yield (kg/fad) and harvest	
	indices (%). Combined analysis of the two growing	
	seasons	00
١٦	Nitrogen physiological parameters of wheat plant as affected by	
	sowing dates. Combined analysis of the two growing	
	seasons	٥٧
١٧	Some biochemical parameters of wheat grain (% of dry matter)	
	as affected by sowing dates. Combined analysis of the two	
	growing seasons	09
١٨	Some technological properties of wheat grain as affected by	
	sowing dates. Combined analysis of the two growing	
	seasons	09
۱۹	Effect of the interaction between wheat cultivars and sowing	
	dates on growth periods. Combined analysis of the two growing	
	seasons	٦٢
۲.	Effect of the interaction between wheat cultivars and sowing	
	dates on blades, stems+sheaths and spikes dry weight (g/m^{γ}) at	

Ш

	booting (B), heading (H) and physiological maturity (Phm) during phynological stages of growth. Combined analysis of the two growing seasons	٦٤
۲۱	Effect of the interaction between wheat cultivars and sowing	
	dates on dry matter partitioning (% of total plant dry weight) of	
	blades (B), stems + sheaths (T) and spikes (S) during	
	phynological stages of growth. Combined analysis of the two	
	growing seasons	70
۲۲	Effect of the interaction between wheat cultivars and sowing	,-
, ,		
	dates on yield components. Combined analysis of the two	7.1
	growing seasons	٦٧
۲۳	Effect of the interaction between wheat cultivars and sowing	
	dates on yield (kg/fad) and harvest indices (%). Combined	
	analysis of the two growing seasons	٦٨
۲٤	Effect of the interaction between wheat cultivars and sowing	
	dates on NUE, NPE, NRE and NHI of wheat plant as affected	
	by sowing dates. Combined analysis of the two growing	
	seasons	۷.
۲0	Effect of the interaction between wheat cultivars and sowing	
	dates on some biochemical properties (% on dry matter basis)	
	of wheat grains. Combined analysis of the two growing	
	seasons	۲۷
۲٦	Effect of the interaction between wheat cultivars and sowing	
	dates on some technological properties of wheat grains.	
	Combined analysis of the two growing seasons	۷۳
	Combined analysis of the two growing seasons	77

LIST OF FIGURES

No	Title	Page
N	Average maximum and minimum temperatures through winter season $(1)/(1)$ and $(1)/(1)/(1)$ as compared to average \circ years in $(1)(1)/(1)/(1)$ seasons at Bahtim, Kaluobia Governorate	۲٩
۲	Varietal differences in blades, stems+sheaths, spikes and total biomass (g dry weight/m ^{r}) dry weight (g/m ^{r}) of Giza ^{r_A} (G), Sakha ^{q_r} (S) and Gemmiza ^{q} (Gem ^{q}) cultivars at booting, heading, physiological maturity stages, and total biomass. Combined analysis of the two growing seasons.	٣٣
٣	Varietal differences in dry matter partitioning (% of total plant dry weight) of stems + sheaths (T), blades (B) and spikes (S) of wheat cultivars Giza 174 (1), Sakha 97 (7) and Gemmiza 9 (7). Combined analysis of the two growing seasons.	٣٤
٤	Plant height (cm), grains No/plant, main spike lengh (MSL, cm) and main spike wt (MS wt, g) of wheat cultivars at harvest. Combined analysis of the two growing seasons	٣٧
0	Effect of wheat cultivars on grain (GY), straw (SY), Grain crude protein (GCPY) and biological yields (BY) (kg/fad). Combined analysis of the two growing seasons	٣٩
٦	Varietal differences in grain N yield (GNY, kg/fad), nitrogen use efficiency (NUE), nitrogen recovery efficiency (NRE) of wheat plant. Combined analysis of the two growing seasons	٤١
٧	Varietal differences in grain crude protein content (GCP%, on dry matter basis) of wheat cultivars. Data of $(\cdot) \cdot (\cdot)$ growing season.	٤٣

٨	Varietal differences in test weight (TW g/l), 'grain weight	
	(1GW, G) and vitreosness (V, %), dry gluten (DG, %), of	
	wheat grain. Combined analysis of the two growing seasons	٤٥

- ⁹ Effect of sowing dates on wheat grain yield (GY), straw yield (SY) and GCPY (kg/fad). Combined analysis of the two growing seasons. °°
- Nitrogen physiological parameters of wheat plant as affected by sowing dates. Combined analysis of the two growing seasons.......

LIST OF ABBREVIATION

Ν	Nitrogen
LAI	Leaf area index
LAD	Leaf area duration
PAR	Photosynthetically active radiation
RUE	Relative use efficiency
TDM	Total dry matter
DAS	Days after sowing
В	Booting stage
Н	Heading stage
Phy m	Physiological maturity stage
SDS	Sodium dodocyl sulfate
PTQ	Photo-thermal quotient
GCPC	Grain crude protein content (%)
GCPY	Grain crude protein yield
NPE	Nitrogen physiological efficiency
NUE	Nitrogen use efficiency
NRE	Nitrogen recovery efficiency
NHI	Nitrogen harvest index

'. INTRODUCTION

Wheat (*Triticum aestivum* L.) is the largest and most important enterprise within the Egyptian industry and the most stable food of world's population especially in Egypt. Wheat production occupies a central position in forming agricultural policies and dominates all crops in acreage and production. Wheat is grown in Egypt on an area of $\Upsilon, \P\Upsilon$ million faddans with a total annual production of about Λ, Υ million tones and with an average yield of $\Upsilon, \Upsilon\circ$ tons per faddan during the year $\Upsilon \cdot \Upsilon \Upsilon \cdot \Upsilon \cdot$ growing season (CLAC, $\Upsilon \cdot \Upsilon$).

Since wheat is a crop that is adapted to cool, moist growing conditions, and has an optimum temperature of grain growth and development have been found to range from $\circ/\circ C$ to $\circ/\circ C$ Chowdhry and Wardlaw (199A). Temperatures above this optimum result in both an acceleration of plant development and a reduction in vegetative stage duration. Increase concentrations of greenhouse gases will result in a continuous increase in earth's temperatures and this increase could significantly reduced wheat plant life and productivity. The yield levels of wheat are relatively not high, possibly due to their greater susceptibility to heat stress, particularly when the plants are exposed to high temperatures coincide with booting and heading stages as well as spikes development. The change of environment temperatures during phenological stages of wheat growth are mainly attributes to environmental changes in sowing date. The terminal or late heat stress especially during anthesis and grain filling stage is considered one of the major environmental factors drastically reduce wheat production throughout most of the wheat growing areas in different agro-ecologies of the country.

In light of the yield losses and low grain quality caused by heat stress as a result of late sowing. Both genotype and the environment in which the crop is grown, as well as the interaction between them have been found to affect the growth, grain yield and quality of wheat.