OXIDIZED LDL ANTIBODIES (OLDLAB) IN THALASSEMIC PATIENT

Thesis

Submitted for Partial Fulfillment of the Master Degree in Pediatrics

Presented By Dina Mohamed Foaad Salah Eldin(M.B.B.Ch.)

Under the Supervision of

Prof. Dr. Mohamed Abo-El-Asrar Mohamed

Assistant Professor of Pediatrics
Faculty of Medicine - Ain Shams University

Prof. Dr. Abeer Ahmed Abd El-Maksoud

Assistant Professor of Pediatrics
Faculty of Medicine - Ain Shams University

Prof.Dr. Dina Elsayed Elshennawy

Assistant Professor of Clinical and Chemcial Pathology Faculty of Medicine - Ain Shams University

> Ain Shams University Faculty of Medicine 2012

First and Foremost thanks are to ALLAH, The compassionate and merciful, whose help is the main factor in accomplishing this work.

It is my pleasure to express my deepest thanks and gratitude to *Dr. Mohamed Abo-El-Asrar Mohamed*, Assistant Professor of Pediatrics, Ain Sams University for his great help and support, kind supervision and continuous encouragement. I am truly grateful for him.

I would like also to express my profound thanks and gratitude to *Dr. Abeer Ahmed Abd el-Maksoud*, Lecturer of Pediatrics, Ain Shams University for her constructive guidance, remarkable effort, and scientific assistance and whatever have been said, is little to express my respect and thanks to her.

I am truly indebted to **Dr. dina el Sayed Elshennawy**, Lecturer of Clinical and Chemical Pathology, Ain Shams University for her meticulous supervision, encouragement, unlimited assistance and guidance during this work.

Last but not least, I would like to express my deep thanks and gratitude to all my dear *Patients* hoping them a good health.

Dina Mohamed Foaad

LIST OF CONTENTS

Title	Page No.
Introduction	1
Aim of the work	4
Review of Literature	
Thalassemia	5
• OxLDL Ab and lipid profile pattern in β-thalassemia	63
Subject and methods	83
Results	90
Discussion	120
Summary	129
Conclusion	133
Recommendations	134
References	135
Arabic Summary	

LIST OF TABLES

Tab. No.	Title	Page No.
Table (1):	Clinical and hematologic features of the principal forms of thalassemias	
Table (2):	Pharmacokinetic and clinical characteristics of three iron chelators.	
Table (3):	Frequencies of studied groups	90
Table (4):	Demographic characteristics of studied groups	90
Table (5):	Comparison between thalassemic and control groups as regards to demographic characteristics	
Table (6):	Comparison between thalassemic and control groups as regards to anthropologic and blood pressure characteristics	
Table (7):	Comparison between thalassemic and control groups as regards to laboratory findings	
Table (8):	Laboratory finding of studied group:	97
Table (9):	Systemic complication review	98
Table (10):	Comparison between thalassemic subgroups as regards to demographic, anthropologic	
	characteristic and blood pressure	
Table (11):	Comparison between thalassemic subgroups as regards to history of thalassemia	
Table (12):	Comparison between thalassemic subgroups as regards to clinical examination	
Table (13):	Comparison between thalassemic subgroups as regards to laboratory findings:	
Table (14):	OxLDL Ab among gender, smoking, and clinical finding	
Table (15):	OxLDL Ab/LDL ratio among gender, smoking, and clinical finding	
Table (16):	Correlation between OxLDL Ab and different characteristics	

LIST OF TABLES (CONT...)

Tab. No.	Title	Page No.
Table (17):	Correlation between OxLDL Ab and laboratory finding:	
Table (18):	Correlation between OxLDL Ab and different parameters of history of thalassemic illness in different study groups	
Table (19):	Correlation between OxLDL Ab/LDL ratio and different characteristic	
Table (20):	Correlation between OxLDL Ab/LDL ratio and laboratory findings	

LIST OF FIGURES

Fig. No.	Title	Page No.
Figure (1):	α, β globin genes on chromosome 11,16	6
Figure (2):	The composition of embryonic, fetal, and adult Hb	8
Figure (3):	Proportions of the various human Hb polypeptide chains through early life	8
Figure (4):	The geographical distribution of the thalassemias and the more common, inherited structural hemoglobin abnormalities	9
Figure (5):	Examples of mutations which produce β -thalassemia	13
Figure (6):	Liver biopsy showing the distribution of iron storage	18
Figure (7):	Simultaneous two diminsional (left panel) and M mode (right panel) echodigram in TI patient (A) and normal subject (B)	24
Figure (8):	Pathophysiological features of hemolysis and hypercoagulbility	28
Figure (9):	Complications and Treatment of β-thalassemia	32
Figure (10):	The facial appearance of a child with β -thalassemia major. The skull x-ray in β -thalassemia major	37
Figure (11):	Discordance of liver and myocardial iron	43
Figure (12):	Rickets like radiological lesions in thalassemia major patients caused by desferoxamine.	51
Figure (13):	Transport of cholesterol between the tissues in humans	64
Figure (14):	Summary of the main events of lipid peroxidation and foam cell formation	73

LIST OF FIGURES (CONT...)

Fig. No.	Title	Page No.
Figure (15):	Gender of studied groups	91
Figure (16):	Comparison between thalassemic and control groups as regards to weight percentile and height percentile	94
Figure (17):	Comparison between thalassemic and control groups as regards to laboratory finding.	96
Figure (18):	Laboratory findings of studied groups	97
Figure (19):	Comparison between thalassemic subgroups as regards to DBP percentile	100
Figure (20):	Comparison between thalassemic subgroups as regards to ages of onset and 1 st blood transfusion	101
Figure (21):	Comparison between thalassemic subgroups as regards to echocardiolography (abnormal)	102
Figure (22):	Comparison between thalassemic subgroups as regards to laboratory findings.	103
Figure (23):	Correlation between OxLDL Ab and age in intermedia.	106
Figure (24):	Correlation between OxLDL Ab and Height percentile in intermedia.	107
Figure (25):	Correlation between OxLDL Ab and BMI in intermedia	107
Figure (26):	Correlation between OxLDL Ab and Total bilirubin in intermedia and major	108
Figure (27):	Correlation between OxLDL Ab and direct bilirubin in intermedia	109
Figure (28):	Correlation between OxLDL Ab and platelet in major	109
Figure (29):	Correlation between OxLDL Ab and blood index in major.	112

LIST OF FIGURES (CONT...)

Fig. No.	Title	Page No.
Figure (30):	Correlation between OxLDL Ab/LDL and Age of 1 st blood transfusion in intermedia	112
Figure (31):	Correlation between OxLDL Ab/LDL and blood index in intermedia	113
Figure (32):	Correlation between OxLDL Ab/LDL and Age of 1 st blood transfusion in major	113
Figure (33):	Correlation between OxLDL Ab/LDL and Age.	115
Figure (34):	Correlation between OxLDL Ab/LDL and BMI in intermedia	115
Figure (35):	Correlation between OxLDL Ab/LDL and triglycerides in intermedia	117
Figure (36):	Correlation between OxLDL Ab/LDL and LDL in intermedia	117
Figure (37):	Correlation between OxLDL Ab/LDL and total bilirubin in intermedia.	118
Figure (38):	Correlation between OxLDL Ab/LDL and total bilirubin in major	118
Figure (39):	Correlation between OxLDL Ab/LDL and Platelet in major	119

List Of Abbreviations

Abbrev.	Full term
ACAT	Acyl-CoA:cholesterol acyltransferase
AHSP	Alpha hemoglobin stabilizing proteins
APS	Antiphospholipid syndrome
ATIII	Anti thrombin III
ATP	Adenosine triphosphate
BCG	Bacillus calmette Guerin
BM	Bone marrow
BMI	Body mass index
BMT	Bone marrow transplantation
βТМ	Beta thalassemia major
CBC	Complete blood count
CIM	Carotid intema thickness
CM	Chylomicrons
CMR	Cardiac magnetic resonance imaging
CVD	Cardiovascular disease
CVS	Chroinic villous sampling
DFO	Desferoxamine
DFT	Tridentate desferrithiocin
DM	Diabetes mellitus
EPO	Erythropoietin
FFA	Free fatty acids
GH-IGF-1	Growth hormone insulin like growth factor-1
GSH	Reduced Glutathione
HB	Hemoglobin
HBED	Hydroxybenzyl-ethylene diamine-diacetic acid
HBF	Hemoglobin F
HBV	Hepatitis B virus
HCV	Hepatitis C virus
HDL	High density lipoprotein

LIST OF ABBREVIATIONS (CONT...)

Abbrev.	Full term
HIC	Hepatic iron concentration
HIV	Human immunodeficincy virus
HLA	Human leucocyte antigen
HPO	Bidentate hydroxypyrinones
ICL 670	Deferasirox
IFN	Interferon
IgA	Immunoglobulin A
IGF	Insulin like growth factor
IgG	Immunoglobulin G
IgM	Immunoglobulin M
IVIG	Intravenous immunoglobulin
L1	Deferiprone
LDH	Lactate dehydrogenase
LDL	Low density lipoprotien
LIC	Liver iron concentration
LOX	Lactin like oxidized LDL
LPI	Labile Plasma Iron
LV	Left ventricle
LVEF	The left ventricular ejection fraction
m RNA	Messanger RNA
MRI	Magnetic resonance imaging
NTBI	Non-transferrin bound iron
OxLDL Ab	Oxidized LDL antibody
PCR	Polymerase chain reaction
PH	Pulmonary hypertension

LIST OF ABBREVIATIONS (CONT...)

Abbrev.	Full term
PIH	Pyridoxal Isonicotilloyl Hydrazone
PUFs	Polyunsaturated fatty acids
PVR	Pulmonary venous return
RBCs	Red blood cells
RDW	Red blood cell distribution width
ROS	Reactive oxygen species
s.TFR	Serum transferrin receptor
SD	Standered deviation
SPL	Splicing mutation
T4	Thyroxin hormone
TBARs	Thiobarbituric Acid Reactive Substances
TC	Total cholesterol
TG	Triglyceride
Th1	Type 1 of T helper cells th 2 Type 2 of T helper cells
TI	Thalassemia intermedia
TM	Thalassemia major
TNF	Tumor necrosis factor
VLDL	Very low density lipoprotien
HSM	Hepatospelenomegaly

INTRODUCTION

halassemia is a genetic disorders in globin chain production. In individuals with β -thalassemia, there is either a complete absence of β -globin production (β °-thalassemia) or a partial reduction (β +- thalassemia (*Debaun and Vichinisky*, 2007).

Beta thalassemia usually become symptomatic as severe hemolytic anemia during 2nd 6 month of life, regular blood transfusion are necessary in these patients to prevent cardiac decompensation caused by anemia (*Eldor et al.*, 2002).

Conventional management of β -thalassaemia major requires regular blood transfusions. This leads to excess iron accumulation, initially in the reticuloendothelial system and subsequently in all parenchymal organs, mainly heart, pituitary gland, pancreas and gonads, resulting in serious and sometimes fatal clinical complications (*Afroditi* and Vassilios, 2006).

Transfusions are given on regular basis to maintain hemoglobin level above 10g / dl, which prevents progressive marrow expansion and cosmotic problems associated with facial bone changes and minimize cardiac dilation and osteoprosis (*Wonke et al., 2001*).

The major cause of morbidity and mortlaity in patients with beta thalassemia major is iron overload associated with chronic blood transfusion therapy, which can lead to iron deposition and damage to the heart, liver and endocrine organs and other organ failure. Iron toxicity is the leading cause of death in beta thalassemia major patients (*Wood et al.*, 2005).

Vascular dysfunction with increased arterial stiffness and endothelial dysfunction has been demonstrated in patients with beta-thalassemia major (*Cheung et al.*, 2002). endothelial dysfunction as well as arterial stiffening is an important precursors for atherosclerosis (*Davignon and Ganz*, 2004), studies have also suggested a link between iron load and risk of atherosclerosis (*Timothy et al.*, 2007).

Thalassemic (TM) patients are subjected to per oxidative tissue injury because of continuous blood transfusions. It has been documented that circulating LDL from TM patients show marked oxidative modification that could represent an event leading to atherogenesis (*Brizzi et al.*, 2002).

In recent years increasing evidence suggests that the oxidative modification of low-density lipoprotein (LDL) is the key step in the sequence of events leading to atherogenesis-related vascular alterations, so modified LDL are internalized in monocyte-derived macrophages through cell surface scavenger receptors, an event that leads to foam