MONITORING OF ACUTE TRAUMATIC CEREBRAL INJURY IN PEDIATRIC

Essay Submitted for the partial fulfillment of Master Degree **In Anesthesiology**

By Sherif Mohsen Mohamed Elsayed Abd Elaziz (M.B.B.Ch,)

Under the supervision of Prof. Dr. Hanaa Elsayed Abou Elnour

Professor of Anesthesiology Faculty of Medicine Cairo University

Prof. Dr. Amina Abou Elela Mousa

Assistant Professor of Anesthesiology Faculty of Medicine Cairo University

Dr. Mohamed Ebrahim Emam

Lecturer of Anesthesiology Faculty of Medicine Cairo University

> Faculty of Medicine Cairo University 2009

مراقبة الاطفال الذين تعرضوا لحوادث ادت الى اصابات حادة بالمخ

مقدمة من الطبيب/ شريف محسن محمد السيد عبد العزيز بكالوريوس الطب والجراحة . جامعة القاهرة

تحت إشراف

كليـــــة الطب جامعة القاهرة

ACKNOWLEDGMENT

First of all, I would like to thank Allah for helping me to finish this work.

I would like to express my deep gratitude to <u>Professor Dr. Hanaa Abou Elnour</u>, Professor of Anesthesiology Faculty of Medicine, Cairo University, and <u>Professor Dr. Amena Abou Elela</u>, who kindly supervised and motivated the performance of this work with keen interest and in dispensable advices.

Also, I want to express my sincere appreciation to <u>Dr. Mohamed Ebrahim Emam</u>, Lecture of Anesthesiology, Faculty of Medicine, Cairo University, for his valuable scientific supervision and guidance.

Words will never be able to express my deepest gratitude to all who helped me during preparation of this study.

<u>CONTENTS</u>

Content	Page
Introduction	1
Anatomy of the pediatric neurology	3
I. anatomy of the pediatric nervous system	6
II. neurophysiology of the pediatric	16
Traumatic brain injury in pediatric	26
I. Causes and mechanism of traumatic brain injury in pediatric	30-31
II. Classification of traumatic brain injury	33
III. Types and pathophysiology	36
IV. Diagnosis of traumatic brain injury	43
V. Complications of traumatic brain injury	51
Monitoring of traumatic brain injury in pediatric	59
I. Intracranial pressure monitoring	61
II. Cerebral oxygenation monitoring	96
III. Microdialysis	112
IV. Transcrainial doppler ultrasound	116
V. Cortical electrical activity and Evoked potentials	122-127
VI. Imaging monitoring	128
Summary	135
References	140

LIST OF TABLES

Table	Title	Page number	
Table2-1	Glasgow Coma Scale	33	
Table2-2	Severity classification of traumatic brain injury	34	
Table 2-3	Severity of a TBI according to duration of loss of consciousness	35	
Table 2-4	Examples of primary and secondary brain injury in TBI	41	
Table 2-5	Glasgow Outcome Scale commonly used to rate outcomes after TBI.	58	
Table 3-1	Indications for ICP monitoring in TBI	63	
Table 3-2	Different methods for ICP monitoring	72	
Table 3-3	Bispectral Index Range	125	

<u>LIST OF FIGURES</u>

Figure	Title	Page
Figure 1-1	The normal newborn skull	питбе <i>r</i> 4
Figure 1-2	Anatomy of the pediatric brain	6
Figure 1-3	View of the brain from the top to the side	9
Figure 1-4	The components of the ventricular system	13
Figure 1-5	Autoregulation curve of cerebral blood flow	20
Figure 1-6	Autoregulation curve of the brain vasculature	22
Figure 2-1	Causes of traumatic brain injury in children	30
Figure 2-2	Coup Injury and Countercoup Injury	32
Figure 2-3	Different types of hematoma.	38
Figure 3-1	Interventerlar ICP monitoring catheter	64
Figure 3-2	Intraventricular ICP monitoring system exa	mple 66
Figure 3-3	The parenchymal ICP monitoring catheter	67

Figure 3-4	Camino ICP Monitoring System	68
Figure 3-5	Camino Parenchymal ICP Monitoring System Example	68
Figure 3-6	Ventrix ICP Monitoring System	68
Figure 3-7	Codman ICP monitor with microsensor transducer cable	69
Figure 3-8	The subdural ICP monitoring catheter	70
Figure 3-9	Subarachnoid screw (bolt)	70
Figure 3-10	Illustrated fiberoptic sensor implanted into the epidural space.	71
Figure 3-11	Camino Catheter-tip transducer	75
Figure 3-12	Codman Micro Sensor transducer	75
Figure 3-13	The external transducer for measuring the intracranial pressure(ICP)	76
Figure 3-14	Normal ICP sawtooth pattern of the waveform	78
Figure 3-15	Strips Of normal ICP waveforms	78
Figure 3-16	A or plateau waves in raised ICP after severe head injury	79
Figure 3-17	Sinus-like B-waves in raised ICP	80
Figure 3-18	Example of the scales of ICP wave form	82

Figure 3-19	Two strip waveforms within 2 different scale	83
Figure 3-20	<i>Two strips the first is ICP and the second is ECG</i>	84
Figure 3-21	Two strips wave form the first is a line and the second is ICP	84
Figure 3-22	Intracranial pressure (ICP) volume curve	88
Figure 3-23	Anatomy of Jugular bulb oximetry	98
Figure 3-24	x ray confirming placement of the jugular venous bulb	99
Figure 3-25	Physiology of jugular venous oxygenation	100
Figure 3-26	Adequacy of CBF monitoring	102
Figure 3-27	Brain Tissue Oxygenation (PBtO2) -LICOX	105
Figure 3-28	Two bar graph demonstrating the PO2 related to ICP	106
Figure 3-29	Principle of microdialysis	113
Figure 3-30	Digital Transcranial Doppler ultrasonography	116
Figure 3-31	Transcranial Doppler device	117
Figure 3-32	NormalEEG	122

<u>ABBREVIATIONS</u>

ЯBG	Arterial Blood Gases
AjvDO2	Difference in Oxygen content between Arterial and Jugular Venous Blood
\mathcal{AMP}	Amplitude
ATP	Adenosine Tri Phosphate
AVMs	Arterio Venous Malformations
BSI	Bi Spectral Index
CaO_2	Arterial Oxygen Content
СВС	Complete Blood Picture
CBF	Cerebral Blood Flow
CBFV	Cerebral Blood Flow Velocity
CBV	Cerebral Blood Volume
cEEG	Continuous Electroencephalography
CFM	Cerebral Function Monitor
СҒАМ	Cerebral Function Analysing Monitor
CjvO ₂	Oxygen Content of Jugular Venous Blood
$CMRO_2$	Cerebral Metabolic Rate of Oxygen
CNS	Central Nerves System
CPB	Cardio Pulmonary Bypass
CPP	Cerebral Perfusion Pressure
CSF	Cerebro Spinal Fluid
CT	Computed Tomography
CVR	Cerebrovascular Resistance
DAI	Diffuse Axonal Injury
$\mathcal{D}O_2$	Cerebral Oxygen Delivery
DRS	Disability Rating Scale
DVT	Deep Vein Thrombosis
EBIC	European Brain Injury Consortiums
ECF	Extra Cellular Fluid
ECG	Electrocardiogram

$\mathcal{E}\mathcal{E}\mathcal{G}$	Electroencephalogram.
ETCO2	End Expiratory CO2
EVD	External Ventricular Device
FIM	Functional Independence Measure
FVmean	Mean Flow Velocity
<i>GABA</i>	Gamma Amino Butyric Acid
GCS	Glasgow Coma Score.
GI	Gastro Intestinal
GOS	Glasgow Outcome Scale
\mathcal{GU}	Genito Urinary
HB	Hemoglobin
НвО2	Oxygenated Haemoglobin
Hct	Hematocrit Value
HPLC	High Performance Liquid Chromatography
HR	Heart Rate
ICP	Intracranial Pressure.
$\mathcal{N}IC\mathcal{U}$	Neuro Intensive Care Unite.
\mathcal{JVP}	Jugular Venous Pressure
LED	light Emitting Diode
LOC	loss of Consciousness
\mathcal{MABP}	Mean Arterial Blood Pressure.
\mathcal{MAP}	Mean Arterial Pressure.
МСА	Middle Cerebral Artery
$\mathcal{M}\mathcal{D}$	Microdialysis
MEPs	Motor Evoked Potential
MRI	Magnetic Resonance Image.
\mathcal{MV}	Motor Vehicle
NIRS	Near-Infrared Spectroscopy
PaO_2	Arterial Partial pressure of Oxygen.
$PaCO_2$	Arterial Partial Pressure of Carbon dioxide.
$PbtO_2$	Brain Tissue Partial Pressure Oxygen
PE	Pulmonary Embolism
PET	Positron-Emission Tomography
PRX	Pressure-Reactivity Index

PTA	Post-Traumatic Amnesia
PTS	Posttraumatic Seizures
\mathcal{PT}	Prothrombin Time
PIT	Partial Thromboplasten Time
P1,2,3	Peak 1,2,3
RAP	Index of Compensatory Reserve
ROS	Reactive Oxygen Species
rSO2	Regional Oxygen Saturation
SAH	Sub-Arachnoid Haemorrhage
SBP	Systolic Blood Pressure
SEPs	Sensory Evoked Potential
SHI	Severe Head Injury
SjvO ₂	Jugular Venous Oxygenation Saturation
SPECT	Single-Photon Emission CT
SSEPs	Somatosensory Evoked Potential
TBI	Traumatic Brain Injury
ТСD	Transcranial Doppler
TCU	Transcranial Doppler Ultrasonography
VMCA	Velocity of Middle Cerebral Artery

INTRODUCTION

<u>INTRODUCTION</u>

Traumatic injuries remain the leading cause of death in children and in adults aged 45 years or younger. Head trauma is more likely in young children than in adults given the same deceleration of the body due to their large and heavy heads and weak cervical ligaments and muscles. Resulting brain injury is more severe due to their thin, pliable skulls and the yet unfused sutures. Accordingly, children below the age of 4 years have lower chances of a full recovery after severe TBI, although in general, neurologic recovery after severe brain injury in children is better than in adults. **[1]**

The pediatric brain has higher water content, 88% versus 77% in adult, which makes the brain softer and more prone to accelerationdeceleration injury. The water content is inversely related to the myelinization process. The unmyelinated brain is more susceptible to shear injuries. Infants and young children tolerate intracranial pressure increases better because of open sutures. [2]

The time course of brain injury can be divided into two steps: primary and secondary injury. Primary brain injury exclusively results from the initial impact. [1]

Adverse physiologic conditions during recovery after head trauma may account for additional brain damage, which is then referred to as secondary brain injury which may occur hours or even days after the inciting traumatic event. Injury may result from impairment or local declines in cerebral blood flow after a traumatic brain injury. Decreases in cerebral blood flow are the result of local edema, hemorrhage, or increased intracranial pressure. As a result of inadequate perfusion, cellular ion pumps may fail, causing a cascade. As the cascade continues, cells die, causing free radical formation proteolysis, and lipid peroxidation. These factors can ultimately cause neuronal death. **[3]**

Three evidence based measures are of critical importance to prevent or minimize secondary brain injury: (a) avoid hypoxemia, (b) avoid posttraumatic arterial hypotension, and (c) refer the traumatized child to an experienced trauma team. **[1]**

The goal of monitoring in the injured brain is to enable the detection of harmful physiological events before they cause irreversible damage to the brain, thereby allowing diagnosis and effective treatment and providing 'on-line' feedback to guide therapy. Aims to minimize secondary injury in an attempt to optimize patient management and outcome. **[4]**

Continuous monitoring of intracranial pressure (ICP) and cerebral perfusion pressure (CPP) has become a standard in neurointensive care of severe head injured patients. In addition, head injured patients should have systemic parameters closely monitored, including ECG, heart rate, blood pressure, temperature, fluid intake and output. Routine monitoring of oxygen saturation and capnography is paramount in severely head injured patients so as to avoid unrecognized hypoxemia or changes in ventilation. New devices including: jugular venous oxygen saturation monitoring, Near-Infrared Spectroscopy , Cerebral Microdialysis, Cerebral Imaging Monitoring, Transcranial Doppler Ultrasonography, Continous electroencephalography. [4]

2

<u>ANATOMY OF THE PEDIATRIC</u> <u>NEUROLOGY</u>

Anatomy of pediatric head differs from that of adult so knowledge of the basic anatomy of the pediatric head, brain and its coverings is essential to understand the mechanism and types of traumatic brain injury in pediatric [5].

The scalp is the outer most covering and is highly vascular, tending to bleed profusely when lacerated. Under the scalp is a tendentious sheath extending from frontal to occipital regions called the galea. The potential space beneath the galea is the **subgaleal compartment** which an occasional site of bleeding after head injury. [6]

Anatomy Of The Newborn Skull:

The skull is the next part after the scalp which is composed of three layers; the bony outer layer and inner tables layer separated by diploic space which is more vascular. Although the skull appears to be one large bone, there are actually several major bones that are connected together. These include: one occipital bone, two parietal bones and two frontal bones. These bony plates cover the brain and are held together by fibrous material called sutures which do not fuse in the child's skull until as late as the tenth year (fig.1-1). [7]