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Abstract

According to rapid development and popularity of Internet and online
procedures, the potential of network attacks has increased substantially in
recent years. Therefore, network security needs to be concerned to provide
secure information channels. Intrusion Detection System (IDS) becomes an
essential component of computer security . Network Intrusion Detection
Systems (NIDS) aims to dynamically identify unusual access or attacks to
secure the internal networks, by looking for potential malicious activities in
network traffic. However, building a high-performance and fast NIDS is a
major research problem in network security.

One of the important problems for NIDS is dealing with data containing
high number of features. High dimensional data may leads to decrease the
predictive accuracy and the speed of the NIDS. Therefore, Feature Selection
(FS) is one of the key topics in building NIDS. (FS) can serve as a pre-
processing tool for high dimensional data before solving the classification
problems. The purpose of the feature selection is to reduce the number of
irrelevant and redundant features. (FS) searches for a subset of features
which improve the prediction accuracy and improves the NIDS speed.

This thesis is devoted to focuss on how to construct a fast accurate NIDS.
The thesis propose two different hybrid NIDS, the proposed hybrid NIDS

models involves data preprocessing, data reduction and intrusion classifica-



tion. Experiments and Analysis of the proposed hybrid NIDSs with other
previous NIDSs demonstrated that; the two proposed hybrid NIDSs enhance

the intrusion detection rate and decreasing the testing speed.
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