

AIN SHAMS UNIVERSITY FACULTY OF EDUCATION DEPARTEMENT OF BIOLOGICAL SCEINCES & GEOLOGY

STUDIES ON THE PRODUCTION OF THERMOSTABLE ALKALINE PROTEASE BY SOME SOIL FUNGI

THESIS SUBMITTED IN PARTIAL FULFILMENT FOR THE DEGREE OF MASTER IN PREPARATION OF SCIENCE TEACHER. (BOTANY)

BY NOUF ALHUMAIDY M. ALDOSSARY

Bachelor of science (Biology), king faisal university, Saudi Arabia(2006) General Diploma in Preparation of Science Teacher (Botany - 2009) Special Diploma in Preparation of Science Teacher (Botany - 2010)

SUPERVISED BY DR. MOHAMED GHAREIB IBRAHIM

Professor of Microbiology Faculty of Education - Ain Shams University

DR. EMAN MOHAMED FAWZY

Professor of Microbiology Faculty of Education - Ain Shams University

> Faculty of Education Ain Shams University. (2013)

Ìq

My Mother, my Brothers and my Sisters

Thesis has not been previously submitted for a degree at this or any other university.

N. A. M. ALDOSSARY

Approval sheet

Name: Nouf Alhumaidy M. Aldossary

Title: Studies on The Production of Thermostable Alkaline Protease By some soil Fungi

Supervisors Approved

Prof. Dr. Mohamed Ghareib Ibraheim

Prof. Dr. Eman Mohamed Fawzy

We apologize for any error we have inadvertently allowed into print

Acknowledgment

Thanks, praise and gratitude to ALLAH, the GOD of all creatures for directing me the right way.

It is a pleasure to avail myself of this opportunity of extending my heartful sense of gratitude and a great honor to my supervisor **Prof. Dr. Mohamed Ghareib Ibraheim** professor of microbiology, Biological Sciences and Geology Department, Faculty of Education, Ain Shams University; for suggesting the point, his able guidance, encouragement, helpful criticism throughout the period of research as well as his inspiring counsel which has always been a source of strength to me.

I feel also sincere and immense debt to **Dr. Eman Mohamed Fawzy** Professor of Microbiology, Biological Sciences and Geology Department, Faculty of Education, Ain Shams University; for supervising the work, the continuous encouragement, helpful advice and constructive criticism during the study.

I also record my thankful appreciation to **Prof. Dr. Naglaa Zaki El-Alfy,** head of Biological Sciences and Geology Department, Faculty of Education, Ain Shams University; for helpful advice, continuous encouragement and providing facilities during the practical work.

Thankful acknowledgement is also to the staff members, my research colleagues and friends of the Biological Sciences and Geology Department, Faculty of Education, Ain Shams University for their valuable help, encouragement and their happily stood with me at every hour of need.

I must also like to express my deepest gratitude and sincere appreciation to, Ministry of Higher Education, Kingdom Saudi Arabia for their kind blessings and helpful co-operation, but I owe special gratitude to Saudi Embassy officials in Cairo that without its encouragement and continuous help, this work would have not seen the light of the day. Finally, I express heartfelt indebtedness to my mother and every member of my family for their kind blessings and helpful co-operation.

CONTENTS

Contents	
Abstract	I-III
Preface	V-IV
Historical review	1
Material and Methods	14
1- Sampling and Analyses	14
a- Sampling	14
b- Analyses	14
i- Mechanical analysis	14
ii- Metrological analysis	15
iii- Chemical analysis	16
2- Determination of alkaline protease producing Fungi	
3-Identification of fungi	
4-Cultivation and Harvesting	18
5-Optimization of culture parameters for production of the alkaline protease enzymes	19
6-Protease assay	19
7-Quantitative estimation of proteins	22
8-Thermostability of the produced enzymes	23
9- Dates waste	24
10-Enzyme purification	24
a- Enzyme precipitation	24
b- Gel filtration	26
c- Ion–exchange chromatography	27

Contents	
11-Enzyme characterization	
a- Effect of pH and temperature on enzyme activity and	
stability	
b-Substrate specificity	29
c-Detection of carbohydrates in composition of the purified	29
enzyme	
d-Sodium dodecyl sulfate-polyacrylamide gel	29
electrophoresis (SDS-PAGE)	
e- Compatibility with detergents	32
f-Washing test	32
12-Statistical validation of treatment effects	33
EXPERMENTAL RESULTS	
CHAPTER I	34
SOIL ANALYSIS, COUNTING, ISOLATION AND	
IDENTIFICATION	
A- Soil analysis	34
B-Counting, Isolation and Identification of Fungi	38
1- Fungal viable count	38
2- Isolation and Identification	
C H A P T E R II	
GROWTH AND THERMOSTABLE ALKALINE	
PROTEASE ACTIVITY OF THE ISOLATED FUNGI	
A- Growth and alkaline protease activity of the isolated fungi	
B-Thermostability of alkaline proteases from the potent fungi	
C H A P T E R III	
OPTIMIZATION OF THERMOSTABLE ALKALINE	
PROTEASE FROM THE THERMOPHILIC FUNGUS	
THERMOMYCES LANUGINOSUS	
a- Effect of different cultural and environmental conditions on	51

Contents	Page No.
production of the thermostable alkaline protease from <i>T</i> .	
	(0
D- Utilization of Dates waste for production of thermostable	69
CHAPTFR IV	72
PURIFICATION AND CHARACTERIZATION OF	/ 2
THERMOSTABLE ALKALINE PROTEASE FROM	
THERMOMYCES LANUGINOSUS	
a- Purification	72
1-Dialysis	70
2-Enzyme precipitation:	72
3-Cel filtration	73 77
4- Ion exchange chromatography through DEAE-	77
Cellulose	
b-General properties of the purified enzyme	87
1-Effect of pH on enzyme activity and stability	87
2-Effect of temperature on enzyme activity and stability	87
3-Substrate specificity	88
4-Effect of substrate concentration	88
5-Effect of some chemical compounds	96
6-Molecular weight and homogeneity of the enzyme	97
7-Compatability with detergents	101
8-Washing test	101
DISCUSSION	105
SUMMARY	122
REFERENCES	129
ARABIC SUMMARY	۱_٦

Table No.	Table Title	Page No.
1	Mechanical analysis of different soil samples	35
2	Some meterological data of different localities	36
3	Chemical analyses of soil samples	37
4	Total viable count of fungi (CFU/g) from different localities of Saudi Arabia	39
5	Occurrence and relative distribution of the fungal genera isolated from soils of five different localities in Saudi Arabia and their alkaline protease production	40
6	Thermostability of crude alkaline proteases produced by the potent producers	50
7	Effect of different pH on production of the alkaline protease by the thermophilic fungus <i>T. lanuginosus</i>	53
8	Effect of different growth temperatures on production of the alkaline protease by <i>T.lanuginosus</i>	57
9	Effect of different carbon sources on production of alkaline protease by <i>T. lanuginosus</i>	59
10	Production of the alkaline protease by <i>T. lanuginosus</i> as a function of changing fructose concentrations	61
11	Effect of different nitrogen sources on production of alkaline protease by <i>T. lanuginosus</i>	63
12	Effect of various concentration of gelatin on the alkaline protease production by <i>T. lanuginosus</i>	65
13	Production of thermostable alkaline protease from	67

LIST OF TABLES

Table No.	Table Title	Page No.
	T. lanuginosus at different periods of incubation	
14	Utilization of dates waste for production of the alkaline protease from <i>T. lanuginosus</i> as a function of changing solid :liquid ratios.	70
15	Effect of changing weights and volumes at the ratio 1:20 on production of the alkaline protease in Dates waste medium	71
16	Dialysis of the cell-free filtrate of alkaline protease production by <i>T. lanuginosus</i>	74
17	Precipitation of alkaline protease from <i>T. lanuginosus</i> CFD	75
18	Purification of alkaline protease from <i>T. lanuginosus</i> by gel filtration through Sephadex G 100	78
19	Further purification of alkaline protease from <i>T. lanuginosus</i> by ion-exchange through DEAE-Cellulose	82
20	Summary of treatments used for the purification of alkaline protease from <i>T. lanuginosus</i>	86
21	Effect of alkaline protease of <i>T. lanuginosus</i> on different protein substrates	93
22	Effect of some metal ions on the activity of the purified alkaline protease from <i>T. lanuginosus</i>	98
23	Effect of some enzyme inhibitors on the activity of the purified alkaline protease from <i>T. lanuginosus</i>	99
24	Compatibility of alkaline protease from <i>T. lanuginosus</i> with some commercial detergents	102
25	Efficiency of the alkaline protease from <i>T</i> . <i>lanuginosus</i> in removing blood stains from white cotton cloth pieces	103

LIST OF FIGURES

Fig No.	Figure Title	Page No.
1	A sketch map of Saudi Arabia showing the localities	15
	(Alahsa, Bqaiq, Dammam, Dhahran and Khobar)	
	from which the soil samples were collected	
2	Standard curve of tyrosine	22
3	Standard curve of albumin	23
4 a	Mycoflora from the soils of the eastern province of	45
	Saudi Arabia grown on modified alkaline	
	Waksman's media (pH 9: Temp .28) using casein as	
	a nitrogen source	
4 b	Mycoflora from the soils of the eastern province of	46
	Saudi Arabia grown on modified alkaline	
	Waksman's media(pH 9) using casein as a nitrogen	
	source	
5	Effect of different pH on production of the alkaline	54
	protease by the thermophilic fungus <i>T. lanuginosus</i>	
6	Effect of different growth temperatures on	58
	production of the alkaline protease by <i>T</i> .	
	lanuginosus	
7	Effect of different carbon sources on production of	60
	alkaline protease by <i>T. lanuginosus</i>	
8	Production of the alkaline protease by T.	62
	<i>lanuginosus</i> as a function of changing fructose	
	concentrations	
9	Effect of different nitrogen sources on production of	64
	alkaline protease by <i>T. lanuginosus</i>	
10	Effect of various concentration of gelatin on the	66

Fig No.	Figure Title	Page No.
	alkaline protease production by <i>T. lanuginosus</i>	
11	Production of thermostable alkaline protease from <i>T. lanuginosus</i> at different periods of incubation	68
12	Purification of alkaline protease from <i>T. lanuginosus</i> by gel filtration through Sephadex G-100	81
13	Further purification of alkaline protease from <i>T. lanuginosus</i> by ion-exchange through DEAE-Cellulose	85
14	Effect of different pH values on activity of the purified alkaline protease from <i>T. lanuginosus</i>	89
15	Effect of different pH values on the stability of the purified alkaline protease from <i>T. lanuginosus</i>	90
16	Effect of different temperatures on the activity of the purified alkaline protease from <i>T. lanuginosus</i>	91
17	Effect of different temperatures on the stability of the purified alkaline protease from <i>T. lanuginosus</i>	92
18	Effect of gelatin concentrations on activity of the purified alkaline protease from <i>T. lanuginosus</i>	94
19	Lineweaver–Burk plot of the reciprocals of initial velocities and gelatin concentrations	95
20	SDS-PAGE of the purified alkaline protease (M, marker, 1, crude enzyme; 2, pure enzyme, single band = 33 kDa).	100
21	Photographs showing the enhancement effect of the alkaline protease from <i>T. lanuginosus</i> on washing performance	103

ABBREVIATIONS

AUMC	Assiut University Mycological Centre
DEAE-Cellulose	Diethylaminoethyl - Cellulose
SDS-PAGE	Sodium dodecyl sulfate-polyacrylamide gel electrophorsis
TSS	Total Soluble Salts
CFU	Colony Forming Unit
ΤΝ	Total number of isolations
HS	Highly Significant
N S	Non Significant
CFF	Cell-Free Filtrate
CFD	Cell-Free Dialyzate
EDTA	Ethylene diaminotetra acetic acid
PMSF	Phenylmethylsulfonyl fluoride
LSD	Least Significant Difference