EXTRACRANIAL INTRACRANIAL ANASTOMOSES FOR CEREBRAL BLOOD FLOW AUGMENTATION

Essay

Submitted in Partial Fulfillment for the (M.Sc.) Degree in General Surgery

By Mahmoud El-Sayed Yousif M.B.B.Ch.

Supervised By

Prof. Dr. Abdel-Alim Ragab

Professor of Neurosurgery Faculty of Medicine Cairo University

Prof. Dr. Mohamed Hosni El-Desouky

Professor of General Surgery Faculty of Medicine Cairo University

Dr. Ahmed Abdel-Aziz Hegazy

Assistant Professor of Neurosurgery Faculty of Medicine Cairo University

FACULTY OF MEDICINE CAIRO UNIVERSITY 2009

ACKNOWLEDGEMENT

It's a pleasure to acknowledge deep gratefulness I owe to Prof. Dr. **Abdel-Alim Ragab**, Professor of Neurosurgery, Faculty of Medicine, Cairo University whose expertise, lucid presentation and fatherly help have eased my task.

I would like to express my gratitude and immense indebtedness to Prof. Dr. Mohamed Hosni El-Desouky, Professor of General Surgery, Faculty of Medicine, Cairo University for his precious guidance, invaluable support and generous supervision.

I pay a very special tribute to Dr. Ahmed Hegazy, Assistant Professor of Neurosurgery, Faculty of Medicine, Cairo University for his unlimited help, valuable advice and generous supervision.

> Mahmoud El-Sayed 2009

ABSTRACT

Cerebrovascular occlusive disease is one of the important causes of cerebral ischemic injury. We have attempted through our essay to define the physiologic and pathophysiologic mechanisms involved in ischemia due to occlusive cerebrovascular disease.

We have also attempted to define the clinical manifestations and investigative techniques involved in investigating the patients and selecting the best surgical candidates.

We have also defined various surgical procedures involved in augmentation of cerebral blood flow in such patients as well as the surgical technique, pre and postoperative managements and possible complications.

Key Words:

Cerebral Blood Flow, Hemodynamic Ischemia, Pathology of Ischemic, Cerebrovascular Disease, Clinical Syndromes of Brain Ischemia, Moyamoya Disease, Imaging of Ischemic Cerebrovascular Disease

This work is dedicated

To my Father, the soul of my Mother

and to my Family

Special dedication to N

LIST OF ABBREVIATIONS

ACA	: Anterior cerebral artery
AchA	: Anterior choroidal artery
CBF	: Cerebral blood flow
CBV	: Cerebral blood volume
CNS	: Central nervous system
СРР	: Cerebral perfusion pressure
CSF	: Cerebrospinal fluid
СТ	: Computerized tomography
СТА	: Computerized tomography angiography
CVR	: Cerebrovascular resistance
CW Doppler	: Continuous wave Doppler
3D	: 3 Dimensional
DSA	: Digital subtraction angiography
ICA	: Internal carotid artery
MCA	: Middle cerebral artery
MRA	: Magnetic resonance angiography
MRI	: Magnetic resonance imaging
OA	: Occipital artery
OEF	: Oxygen extraction fraction
PC	: Phase contrast
PCA	: Posterior cerebral artery
PET	: Positron emission tomography
PICA	: Posterior inferior cerebellar artery
RAG	: Radial artery graft
rCBF	: Regional cerebral blood flow
RIND	: Reversible ischemic neurological deficit
SCA	: Superior cerebellar artery
SPECT	: Single photon emission from computerized tomography
SSS	: Superior sagittal sinus
STA	: Superficial temporal artery
Тс	: Technetium
TCD	: Transcranial Doppler
TIA	: Transient ischemic attack
TOF	: Time of flight
Xe	: Xenon

LIST OF FIGURES

Fig.	Title	Page
1	Large capitated infracted in the distribution of the left middle	
	cerebral artery	15
2	T2-weighted MRI image showing acute lacunar infarct in the left	
	putamen and globus pallidus	17
3	Lateral aspect of the cerebral hemisphere showing the branches	
	and distribution of the middle cerebral artery and the principal	
	regions of cerebral localization	25
4	Medial aspect of the cerebral hemisphere showing the branches	
	and distribution of anterior cerebral artery and the principal	
	regions of cerebral localization	26
5	Anteroposterior projection of common carotid artery injection	31
6	MRA image revealing stenosis of the left internal carotid artery	39
7	Pial collateralization in MCA occlusion	41
8	Border zone shift in a left common carotid artery occlusion	42
9	Conventional angiogram showing severe stenosis of the internal	
	carotid artery	43
10	PET showing increased OEF	47
11	SPECT image showing marked increased of uptake in both	
	anterior cerebral artery and posterior cerebral artery territories	51
12	SPECT after an acetazolamide load with marked increase of	
	uptake in both anterior cerebral artery and posterior cerebral artery	
	territories	53
13	Drawing illustrating how Doppler ultrasound is used to map out	
	the course of the STA	55
14	Drawing illustrating how a needle point cautery is used to make an	
	incision directly over the STA	56
15	Drawing showing dissection of the STA with its surrounding cuff	
	of tissue	57

Fig.	Title	Page
16	Drawings illustrating how final preparation of the donor artery is	
	performed by spatulating the end and irrigation of the lumen with	
	heparinized saline	62
17	Drawings illustrating how the donor artery is then brought down in	
	an end-to-side fashion against the recipient artery and initially	
	secured with a "heel stitch" using a 10-0 suture tied with a	
	surgeon's not	64
18	Radial artery dissection	73
19	Performing anastomosis between radial artery and M4	74
20	Postoperative angiography showing the site of the anastomosis	75
21	The front and backs walls are sutured	80
22	A side-to-side anastomosis to allow the contralateral PICA to supply	
	the ipsilateral PICA	82
23	Postoperative angiography showing the bypass to be fully patent	82
24	Preoperative positioning of the patient	86
25	Stages of performing the anastomosis	86

CONTENTS

	Page	
Acknowledgement		
Abstract		
List of Abbreviation		
List of Figures		
Introduction and Aim of the Work	1	
Review of Literature:		
Cerebral Blood flow	3	
Hemodynamic Ischemia	10	
Pathology of Ischemic Cerebrovascular Disease	14	
Clinical Syndromes of Brain Ischemia	20	
Moyamoya Disease	29	
Imaging of Ischemic Cerebrovascular Disease	32	
Superficial Temporal Artery-to-Middle Cerebral Artery Bypass	54	
Occipital Artery to Posterior Inferior Cerebellar Artery Bypass	67	
Hemi-Bonnet Bypass	69	
"Bonnet" Bypass with Radial Artery	72	
Occipital Artery-Posterior Cerebral Artery Bypass	76	
In Situ Bypass	78	
M2/M2 Side-to-Side Anastomosis	84	
Summary		
References		
Arabic Summary		

INTRODUCTION AND AIM OF THE WORK

The convergence of microneurosurgical techniques and more refined understanding of the pathophysiology of cerebral ischemic disease set the stage for the EC-IC bypass. Fisher had quite astutely stated in 1951, "it is even conceivable that some day vascular surgery will find a way to bypass the occluded portion of the artery" (Amin-Hanjani et al., 2005).

Cerebral revascularization has developed from the culmination of several technologies, from the early beginnings of vascular surgical techniques in animals, to the development of the microscope, the bipolar coagulation, and suitable suture material. Major questions concerning the indications and benefits of cerebral revascularization are being addressed and interest in further advancing this field to make it safer for patients remains strong. Important research into perioperative blood flow assessment will play an important role in determining the success of cerebral revascularization. It is hoped that with better understanding of the pathophysiology of cerebral ischemia and better patient selection, cerebral revascularization will remain an important tool in contemporary neurosurgery (**Chmayssani et al., 2007**). The **aim** of this work to describe the procedural steps in the selection of possible candidates for revascularization surgery and we will describe details the various diagnostic technique used in the perisurgical evaluation of such candidates specially importance will be given to the description of the different surgical techniques available for the treatment of various bypass surgeries outlining the most modern and up to date research relevant to this topic outcome of bypass surgery based on the most recent studies in such field.

CEREBRAL BLOOD FLOW

Our understanding of the relationship between cerebral circulation and cerebral function has evolved through refinements in the delineation of cerebral anatomy and physiology.

Ischemic injury may be a final common pathway in many types of cerebral insults. During cerebrovascular procedures, ischemic injury may result from an unanticipated complication of planned permanent or temporary vessel occlusion. An understanding of the physiologic controls of normal cerebral blood flow and the pathophysiology of ischemic injury is necessary for planning effective strategies to minimize the consequences of cerebral ischemia (**Rosenblum et al., 1990**).

Normal Cerebrovascular Control:

The brain is unique in that it is supplied by four major arteries that join in an equalizing manifold, the circle of Willis. The carotid arteries each supply approximately 40 percent of the total perfusion requirements of the brain.

The traditional view of the cerebral circulation saw the arterial supply as being functionally and morphologically separated into two distinct categories: the extracerebral vessels, including the major arteries at the base of the brain and the pial vessels, and the intracerebral vessels, or the penetrating arteries.

Four major, interdependent mechanisms are involved in the control of cerebral blood flow: metabolic coupling: neural control, involving both extrinsic and intrinsic neural pathways; Pco₃; and autoregulation. Although this division may be somewhat artificial and these control mechanisms probably operate in concert, it is useful to consider each separately (**Bhatti et al., 1992**).

Metabolic control:

Local cerebral blood flow (CBF) is regionally heterogenous. The varied pattern of CBF is neither random nor related to the anatomic organization of the cerebral vasculature or to known differences in the innervation patterns of the cerebral vessels. Neuronal activity is the principal energy-consuming process in the brain. Local cerebral blood flow adjusts to the level of energy generation; therefore, it is the activity in the neuronal circuits that is the major determinant of variations and regional patterns of cerebral blood flow.

Normally there is exquisite coupling between the regional cerebral metabolic demand for oxygen and glucose generated by local neuronal activity and the volume of blood flowing through that tissue.

4

Alterations in the concentrations of local metabolites may lead to changes in regional CBF. Several chemical species capable of altering local vascular tone generated during periods of enhanced neuronal or glial activity have been considered as mediators of the coupling between How and metabolism.

These include extracellular pH, Pco₂, adenosine, glycolytic intermediates, and extracellular potassium (indirectly, through its role in neuronal and smooth muscle cell membrane function, even though it is not directly involved in energy metabolism) (**Brayden et al., 1986; Selman et al., 1994**).

Neurogenic control:

It is important to consider not only the extrinsic nerve supply from the cranial ganglia to the cerebral arteries, and veins, but also the role of intracerebral neurons serving the intracerebral vasculature. A dense plexus of nerve fibers in the walls of cerebral vessels, forming a "minibrain" or regulator) center, has been documented. Given this arrangement, neurons could form the coupling mechanism between metabolism and flow.

Most of the neuron fibers investing the cerebral vasculature are sympathetic. They appear to function by reducing CBF under conditions where it has been increased by metabolic demand, and they may raise the threshold for the breakthrough of autoregulation that occurs with arterial hypertension.

With the advent of both autoradiographic methods for the determination of regional CBF and positron emission tomography (PET) studies of cerebral circulation and metabolism in humans, as well as an explosion of techniques and knowledge in biochemical neuroanatomy, a growing body of evidence supports the concept that the brain can regulate its own blood flow through intrinsic neural networks (Edvinsson et al., 1993).

Carbon Dioxide (CO₂):

It has been well established that alterations in $Paco_2$ result in marked vasodilation. There is an exponential relationship between $Paco_2$ and CBF within a $Paco_2$ range of 25 to 60 mmHg, with a CBF change of approximately 4 percent per millimeter of mercury.

Autoregulation:

Autoregulation is defined as the physiologic maintenance of a constant flow over a moderate range of perfusion pressures.

CBF can be described by the relationship between cerebral perfusion pressure (CPP) and cerebrovascular resistance (CVR):

Although myogenic, neurogenic, and metabolic mechanisms have been postulated, the precise control of the autoregulatory response remains unknown.

A growing body of evidence suggests that endotheliumdependent mechanisms function as the primary mediating factor of vascular tone, and they are now considered as a facet of the myogenic hypothesis of autoregulation. The endothelium acts as a transducer of hemodynamic forces that lead to the release of vasoactive substances.

In the brain, autoregulation is manifest as the lack of major fluctuation in CBF despite changes in mean arterial blood pressure between 60 and 150 mmHg.

A knowledge of the cerebrovascular status of the patient with respect to hypertension may also be a consideration in the planning of temporary vessel occlusion during cerebrovascular surgery (**Iadecola et al., 1992**).

Cerebral Blood Flow and Ischemic Thresholds:

Although the brain represents only 2 percent of the total body weight, it receives 18 percent of the cardiac output and uses 20 percent of the oxygen supply. Its high metabolic demand and lack of appreciable energy reserves render the central nervous system uniquely susceptible to alterations of blood supply. The use of PET

7