EARLY CHANGES OF CARDIAC STRUCTURES AND FUNCTIONS IN COPD PATIENTS

Thesis

Submitted for partial fulfillment of the requirements for Master Degree in Chest Diseases ad Tuberculosis

By

Moamen Mohamed Khalifa

(M.B.,CH.)

Under the supervision of

Prof. Mohamed Awad Tag Eldin

Professor of chest diseases

Faculty of Medicine- Ain Shams University

Prof. Adel Mohamed Eletriby

Professor of cardiology

Faculty of Medicine- Ain Shams University

Assist. Prof. Gehan Mohamed Elassal

Assistant prof. of chest diseases

Faculty of Medicine- Ain Shams University

Faculty of Medicine Ain Shams University 2010

Acknowledgement

Thanks first and last to **ALLAH** for helping me to accomplish this work as we owe to him for his great care, support and guideness in every step in our life.

It is a great pleasure to acknowledge my deepest gratitude to Prof. Dr. Mohammed Awad Tag Eldin, professor of chest diseases, Faculty of Medicine, Ain Shams University, for his unlimited help, continuous encouragement and kind supervision.

I have the greatest pleasure to express my gratitude to Prof.Dr. Adel Mohamed Eletriby, professor of cardiology, Faculty of Medicine, for his endless support and great assistance throughout this work.

wish deepest gratitude express and I to my appreciation to Assist. Prof. Gehan Mohamed Elassal, Assistant professor of chest diseases, Faculty of I for her kind help, guideness and sound advice Medicine. were essential for completion of this work.

Lastly, great full thanks to all my professors of chest diseases and all those who gave me hand in the finalization of this work.

Moamen Mohamed Khalifa

LIST OF FIGURES

Fig No.	Title	Page No.
Figure ((1): Pathogenesis of cor pulmonale in COPD, illustrating important roles o increased right heart filling pressure and hypercapnia	f s
Figure	(2): Optic-microscopic view of a pulmonary artery from a patient with pulmonary hypertension secondary to COPD.	n D
Figure (3): Prognosis of patients with COPD as a function of Ppa looks similar to reported in patients with PAH	C
Figure	(4): Comparison between cases and controls as regard PFT	
Figure	(5): Comparison between cases and controls as regard echo findings	
Figure	(6): Comparison between cases and controls as regard echo findings	
Figure ('	7): Linear regression analysis showing significant positive correlation between right ventricular end diastolic volume and forced expiratory volume in the first second in the patients groups	n - 1 1

LIST OF FIGURES (Cont...)

Fig No.	Title	Page No.
Figure	(8): Linear regression analysis showing significant negative correlation between right ventricular wall thickness / right ventricular end diastolic volume and forced expiratory volume in the first second in the patients groups	L - L
Figure	(9): Linear regression analysis showing significant negative correlation between heart rate and partial oxygen tension in the patients groups.	3
Figure	(10): Linear regression analysis showing significant negative correlation between heart rate and partial oxygen tension in the patients groups.	9 8

LIST OF TABLES

Table. No.	Title	Page No.
Table (1):	Comparison between cases ar controls as regard age	
Table (2):	Distribution of the studied cas as regard laboratory data	
Table (3):	Comparison between cases ar controls as regard PFT	
Table (4):	Distribution of the studied cas as regard arterial blood gases	
Table (5):	Comparison between cases ar controls as regard echo finding	
Table (6):	Comparison between cases ar controls as regard echo finding	
Table (7):	Correlation between echo finding versus PFTs among cases	
Table (8):	Correlation between echo finding versus PFTs among controls	
Table (9):	Correlation between echo finding versus PFTs among mild cases.	

LIST OF TABLES (Cont...)

Table. No.	Title	Page No.
Table	(10): Correlation between findings versus PFTs moderate cases.	among
Table	(11): Correlation between findings versus PFTs severe cases	among
Table	(12): Correlation between findings versus ABG cases	among

LIST OF CONTENTS

Title	Page No.
Introduction	1
Aim of the Work	4
Review of Literature	5
Subjects and Methods	
Results	
Discussion	
Conclusions	
Recommendation	
Summary	
References	
Arabic Summary	

LIST OF ABBREVIATIONS

API	al protease inhibitor
ATP	Adenosine tri phosphate
ATS	American thoracic society
BAL	Broncho alveolar lavage
BCM	body cell mass
BMI	body mass index
BTS	British thoracic society
CLE	centrilobular emphysema
COPD	Chronic obstructive pulmonary disease
Creat	Createnine
CSE	Cigarette smoke extract
ECG	Elctro cardiogram
ECP	eosinophil cationic protein
EGF	epidermal growth factor
EPO	eosinophil peroxidase
ERP	elastic recoil pressure
ERS	European respiratory society
ESCT	Egyptian society of chest diseases and
	tuberculosis
ET-1	Endothelin-I
FEV1	Forced expiratory volume in first second
FFM	fat-free mass
FRC	functional residual capacity

LIST OF ABBREVIATIONS (Cont...)

FRC	Functional residual capacity
FVC	Forced vital capacity
FVC	Forced vital capacity
GH	growth hormone
GM-CSF	Granulocyte-macrophage colony stimulating
	factor
GOLD	Global initiative of lung disease
H2O2	Hydrogen peroxide
HGB	Haemoglobin
HR	Heart rate (beat per minute)
IGFs	Insulin-like growth factors
IL-8	Interleukin-8
LTB4	leukotriene B4
LV	left ventricular
LVEDV	Left ventricular end diastolic volume
LVESV	Left ventricular end systolic volume
LVWT	Left ventricular wall thickness
MCP-1	Macrophage chemotactic protein-1
MIP-la	macrophage inflammatory protein-lα
MMPs	matrix metallo proteinases
MPO	myeloperoxidas
NE	neutrophil elastase
NK	natural killer
NO	Nitric oxide
NO2	Nitric dioxide

LIST OF ABBREVIATIONS (Cont...)

PaCO2	Partial carbon dioxide tension
PaO2	Partial oxygen tension
PLE	panlobular emphysema
PLT	Platelets
PvAccT	Per ventricular Acceleration Time (msec)
RBCs	Red blood cells
RV	Residual volume
RV	right ventricular
RVEDV	Right ventricular end diastolic volume
RVESV	Right ventricular end systolic volume
RVWT	Right ventricular wall thickness
SICAM-I	soluble intercellular adhesion molecule
SLPI	secretory leukoproteinase inhibitor
TCA	tricarboxylic acid
TGF-B	Transforming growth factor-B
TLC	total lung capacity
TNF-α	Tumor necrosis factor alpha
Urea	Urea
V / Q	ventilation perfusion ratio
VC	Vital capacity
VIP	vasoactive intestinal peptide
WBCs	White blood cells
WHO	World health organization
α1-AT	Alpha-1 antitrypsin
α1-Pi	Alpha-1 protease inhibitor

INTRODUCTION

There is no universally accepted terminology or definition for the group of conitions characterized by airway obstruction that is incompletely reversible (Snider et al., 1996).

There are several problems that have to be considered. The first results from the use of the term "chronic obstructive pulmonary disease" (COPD) which is considered inaccurate since this is not truly a disease but a group of diseases *(Siafakas et al., 1995)*.

The guideline publisged by the American Thoracic Society (ATS) define COPD as "a disease state characterized by the presence of airflow obstruction due to chronic bronchitis or emphysema, the airflow is obstruction generally progressive, may be accompanied by airway reactivity, and may be partially reversible (American Thoracic Society, 1995).

The European respiratory society (ERS) has adopted a similar definition "a disorder characterized by reduced maxium expiratory flow and slow forced emptying of the lung, features which do not change markedly over several months" *(British Thoracic Society, 1997).*

S II	roduction	

However, the term "chronic bronchitis and emphysema" has often been used loosely to define a patient with chronic cough and associated airflow obstruction, although airflow obstruction dies not appear in the definition, the most widely term is COPD, which has been accepted in the British Thoracic Society (BTS) guidelines on the management of this condition and is the title of a major British textbook on the subject *(Calverley et al., 1996)*.

Hypersecretion of mucus is a symptom that has been extensively studied in general population surveys over the last 40 years. In these studies, usually in the middle – aged men, the prevalence of chronic cough, or chronic cough and the production of sputum, ranges between 15 and 53%, with a lower prevalence of 8-22% in women, being more prevalent urban than rural areas (Anderson et al., 1994; Cullinan et al., 1992).

The classical view of the development of heart failure in patients with COPD is that hypoxia leads to pulmonary hyperstension, which imposes increased work in the right ventricle, leading to right ventricular hypertrophy and eventually right ventricular dilatation and the development of peripheral oedema *(Rubin et al., 1998)*.

The Introduction	

Previous research was done by Vonk-Noordegraaf and his colleagues, the researchers found that the right ventricles of the patients with COPD were abnormally enlarged compared to those without the disease. The ventricular structure had been altered in the COPD group, as well. However, the function of both ventricles in the COPD patients and in those who were healthy was generally about the same. However the early changes in the cardiac structure and function in COPD patients are doubtful *(Via Braschi et al., 2004)*.

Doppler echorcardiography is proving to be useful way of assessing pulmonary artery pressure. The measurement that have been utilized include the preejection period, which is the time interval from the onset of electrocardigraphic QRS to the onset of pulmonary artery systolic flow, the accerleration time, which is the time between the onset of flow to the peak systolic flow, and ejection time which is the interval from the onset to the cessation of flow, the one that measurement most investigators agree is important is the acceleration time (Senecal et al., *1977)*.

AIM OF THE WORK

 $T_{\text{the cardiac structure and function in COPD}}^{\text{he aim of the work is to assess the early changes in the cardiac structure and function in COPD}$

```
Review of literature
```

Chronic Obstructive Pulmonary Disease

he term "chronic obstructive pulmonary disease" (COPD) describes а heterogeneous and overlapping group of disorders. Indeed, standards of the American thoracic society define "COPD" as a "disorder characterized by abnormal testsof expiratory flow (structural or functional) that do not change markedly over periods of several months observation". As such, this definition subsumes chronic bronchitis (a clinical diagnosis), emphysema (a pathological diagnosis), and peripheral airway disease, but excludes specific causes of airflow obstruction such as bronchiectasis or cystic fibrosis (A.T.S., 1995).

Definition

Chronic obstructive pulmonary disease (COPD) is a preventable and treatable disease state characterized by airflow limitation that is not fully reversible. The airflow limitation is usually both progressive and associated with an abnormal inflammatory response of the lungs to noxious particles or gases, primarily caused cigarette smoking. Although COPD affects the lungs it also produced significant systemic consequences *(Celli et al., 2004)*.