Haemoglobin level in patients with Chronic obstructive pulmonary diseases

Thesis

Submitted for Partial fulfillment of Master Degree in Chest Diseases and Tuberculosis

> Presented by Mona Mohammad El Sayed M.B.,B.Ch.

> > Under Supervision of

Prof. /Taher Abd El Hameed El Nagar

Professor of Chest Diseases Faculty of Medicine Ain Shams University

Dr. / Ashraf Mokhtar Madkour

Assistant professor of Chest diseases Faculty of Medicine Ain Shams University

> Faculty of Medicine Ain Shams University 2010

List of Contents

	Page
i- Acknowledgement	Ι
ii- List of Abbreviations	II
iv- List of Tables	IV
v- List of Figures	VIII
1. Introduction	1
2. Aim of the work	3
3. Review of literature	4
Definition	4
Stages	6
Burden of COPD	9
Epidemiology	9
Prevalence	9
Morbidity	11
Mortality	11
Epidemiology in Egypt	12
Smoking prevalence in Egypt	13
Social burden	14
Economia hurden	14
Piel for the state	14
Risk factors	15
Environmental exposures	12
Tobacco smoke	12

	Outdoor air pollution
	Indoor air pollution
	Occupation
	Respiratory infection
Host	factors
	Atopy and hyperresponsiveness
	Sex
	Socioeconomic status
	Growth and nutrition
	Genetic factors
Patholog	enesis
Patholog	у
Pathophy	vsiology
Clinical d	liagnosis of COPD
Histo	Dry
Exar	nination
Investiga	tions
Different	ial diagnosis 0f COPD
Managen	nent of COPD
Asse	s and monitor
Redu	ace risk factors
Man	agement of stable COPD
	Pharmacological treatment
	Non-pharmacological treatment
Man	agement of exacerbations
	Home management

Hospital management	58
4.Hemoglobin	
Genetics	67
Synthesis	67
Structure	68
Types of Hemoglobin	70
Binding of oxygen to Hemoglobin	71
Causes of Hemoglobin deficiency	77
Causes of increased Hemoglobin level	79
Anemia and COPD	80
Mechanism of anemia of chronic disease	81
COPD as a cause of anemia of chronic disease	83
Polycythemia	87
Pathophysiology	87
Clinical picture	88
Causes	90
3. Subjects & Methods	97
4. Results	107
5. Discussion	134
6. Summary	145
7. Recommendations	149
7. References	150
8. Appendix	
9. Arabic summary	

List of abbreviations

- \$: Dollar.
- 2hPPBS: 2 hours post prandial blood sugar.
- 6MWDT: Six minute walk distance test.
- ACD: Anemia of chronic disease.
- AF: Atrial fibrillation.
- AIDS: Autoimmune deficiency syndrome.
- ALT: Alanine transaminase.
- AST: Aspartate transaminase.
- ATP: Adinosine triphosphate.
- ATS: American Thoracic Society.
- BAL: Bronchoalveolar lavage
- BMI: Body mass index.
- BODE: body mass index, airflow obstruction, dyspnea, and exercise capacity.
- BTS: The British Thoracic Society.
- Cm: Centimeter.
- CN-: Cyanide.
- CO: Carbon monoxide.
- CO 2: Carbon dioxide.
- · COPD: Chronic obstructive pulmonary disease.
- CRP: C-reactive protein.
- CT: Computed tomography.
- CXR: Chest x ray.
- · DALY: Disability-Adjusted Life Year.
- dl: deciliter.
- DU: Duodenal ulcer.
- ECG: Electrocardiogram.
- ECP: Eosinophil cationic protein.
- EPO: Erythropoietin.
- ERS: The European Respiratory Society.
- ET-1: Endothelin-1.
- FEV₁/FVC: Forced expiratory volume in first second/ forced vital capacity.
- FEV1: Forced expiratory volume in first second.

- Fe: Iron.
- FVC: Forced vital capacity.
- GERD: Gastro esophageal reflux disease.
- gm/dl: gram per deciliter.
- gm: gram.
- GOLD: Global Initiative for Chronic Obstructive Lung Disease.
- GM-CSF: Granulocyte-macrophage colony stimulating factor.
- HB: Hemoglobin.
- HCT: Hematocrite level.
- HTN: Hypertension.
- IgE:Imunoglobulin E.
- IL-6: Interleukin6.
- IL-8: Interleukin8.
- Kg/m²: kilogram/meter square.
- L: litter.
- LTOT: Long term oxygen therapy.
- MENA: Middle East and North Africa region.
- mEPHX1: Microsomal epoxide hydrolase1.
- Mg/L: Milligram/litter.
- μg: Microgram.
- MCP-1: Macrophage chemotactic protein -1.
- MIP-1: Macrophage inflammatory protein-1.
- MMRC: Modified medical research council.
- MV: Minute ventilation.
- NE: Neutrophil elastase.
- NHANES3: The third National Health and Nutrition Examination Survey.
- NIPPV: Noninvasive intermittent positive pressure ventilation.
- NIV: Noninvasive ventilation.
- No. : Number.
- NO2: Nitrogen dioxide.
- O2: Oxygen.
- Oxy: Oxygen.
- PaCO2: Arterial partial pressure of CO2.
- PaO2: Arterial partial pressure of oxygen.
- PEF: Peaked expiratory flow rate.
- Plt: Platelet count.

- PT: Prothrombin time.
- PTT: Partial thromboplastin time.
- RBC: Red blood cells.
- SaO₂: Oxygen saturation.
- SO: Sulfur monoxide.
- S2-: Sulfide.
- s-TNF-R55: Soluble tumor necrosis factor receptor 55.
- s-TNF-R75: Soluble tumor necrosis factor receptor.
- TB: Tuberculosis.
- TGF-1: Transforming growth factor beta1.
- TLC: Total leucocytic count.
- TLCO: Carbon monoxide transfer factor.
- TNF: Tumor necrosis factor alpha.
- UK: United Kingdom.
- USA: United State of America.
- V_A/Q: Ventilation/perfusion ratio mmHg millimeter mercury.
- VIP: Vasoactive intestinal peptide.
- WHO: World health organization.
- WOB: Work of breathing.
- YLD: Years of living with disability.

List of tables

• Table (1): Staging of COPD according to Egyptian guidelines, 2003.	page 7
• Table (2): Staging of COPD according to GOLD 2008.	8
• Table (3): Site of inflammatory cell increases in COPD.	22
• Table (4): Differential Diagnosis of COPD.	48
• Table (5): Stepwise therapy at each stage of COPD.	53
• Table (6): MMRC Dyspnea scale.	99
• Table (7): Severity of COPD by spirometry.	101
• Table (8): Variables and point values used for BODE index.	E 105
• Table (9): Risk of death according to The BODE index.	106
• Table (10): Description of personal and clinical characteristics of stable COPD outpatients' group.	108
• Table (11): Description of personal and clinical characteristics of COPD inpatients' group.	110
Table (12): Comparison between anemic and non anemic patients among stable COPD outpatients' group	112
• Table (13): Comparison between anemic and non anemic patients among stable COPD outpatients' group regarding COPD grade.	114

 Table (14): Comparison between anemic and non anemic patients among stable COPD outpatients' group regarding use of long term oxygen therapy 	115
 Table (15): Comparison between anemic and non anemic patients among COPD inpatients' group. 	116
 Table (16): Comparison between anemic and non anemic patients among COPD inpatients' group regarding COPD grade. 	118
 Table (17): Comparison between anemic and non anemic among inpatients' group regarding use of long term Oxygen therapy 	119
• Table (18): Comparison between polycythemic and non polycythemic patients among stable COPD outpatients' group.	120
• Table (19): Comparison between polycythemic and non polycythemic patients among stable COPD outpatients' group regarding COPD grade.	123
 Table (20): Comparison between polycythemic and non polycythemic patients among stable COPD outpatients' group regarding Smoking habit. 	124
• Table (21): Comparison between polycythemic and non polycythemic patients among stable COPD outpatients' group regarding use of long term oxygen therapy	125
 Table (22): Comparison between polycythemic and non polycythemic patients among COPD inpatients' group 	126

 Table (23): Comparison between polycythemic and non polycythemic patients among COPD inpatients' group regarding COPD grade. 	127
 Table (24): Comparison between polycythemic and non polycythemic patients among COPD inpatients' group regarding smoking habit. 	128
 Table (25): Comparison between polycythemic and non polycythemic patients among COPD inpatients' group regarding LTOT. 	129
• Table (26): Comparison between stable COPD outpatients and inpatients' groups as regard personal and clinical data.	130

List of figures

	Figure (1): Pathogenesis of COPD.	page 20
•	Figure (2): Cells and mediators involved in the pathogenesis of COPD.	21
•	Figure (3): Normal spirogram and spirogram of moderate COPD patient.	43
•	Figure (4): Structure of Heme group.	68
•	Figure (5): Hemoglobin's oxygen dissociation curve.	76
•	Figure (6): Levels of inflammatory markers in patients with COPD.	85
•	Figure (7): Comparison between anemic and non anemic COPD patients as regard frequency of hospital admission among outpatients' group.	113
•	Figure (8): Comparison between anemic and non anemic COPD patients as regard MRC Dyspnea score in outpatients' group.	113
•	Figure (9): Comparison between anemic and non anemic COPD patients as regard exercise capacity among outpatients' group.	114
•	Figure (10): Comparison between anemic and non anemic COPD patients as regard frequency of hospital admission among inpatients' group.	117
•	Figure (11): Comparison between anemic and non anemic COPD patients as regard MRC Dyspnea scale among inpatients' group.	117

Figure (12): Comparison between anemic and non anemic COPD patients as regard exercise capacity measured by 6MWDT among inpatients' group.

•

- Figure (13): Comparison between polycythemic and non polycythemic COPD patients as regard exercise capacity in outpatients' group.
- Figure (14): Relation between haemoglobin level (Hb) and exercise capacity measured by 6MWDT.
- Figure (15): Relation between haemoglobin level 122 (Hb) and MRC Dyspnea scale.
- Figure (16): Comparison between polycythemic and non polycythemic COPD patients as regard exercise capacity among inpatients' group.
 127
- Figure (17): Comparison between the two studied groups regarding smoking habit.
- Figure (18): Comparison between the two studied groups regarding previous admission. 132
- Figure (19): Comparison between the two studied groups regarding grade of COPD. 133
- Figure (20): Comparison between the two studied groups regarding level of haemoglobin. 133

Acknowledgement

Thanks first and last to *Allah* as we owe him for his great care, support and guidance in every step in our life.

I would like to express my cordial appreciation and infinite gratitude to *Prof. Taher Abd El Hameed El Nagar*, Professor of Chest Diseases, Faculty of Medicine, Ain Shams University, who brought this work to light and guide me all through the way. Without his constant support and animated advance, this thesis would not have ended successfully. He provided valuable and constructive criticism and was continuously following reviewing my work till the end.

I would like to express my deep thanks and gratitude to *Dr*: *Ashraf Mokhtar Madkour*, Assistant Professor of Chest diseases, Faculty of Medicine, Ain Shams University for his constant support which has been of greatest value in accomplishing this work.

Lastly, I would like to express my deep thanks to all the staff of Chest Department, Ain Shams University for their encouragement and helpful advices.

Introduction

Chronic obstructive pulmonary disease (COPD) is a major cause of chronic morbidity and mortality and is characterized by chronic air flow limitation. Many people suffer from this disease for years and die from it or its complications (*Lopez et al., 2006*).

COPD produce significant extra pulmonary (systemic) manifestations Including nutritional abnormalities, weight loss, skeletal muscle Dysfunction, anemia and patients are at increased risk for myocardial infarction, osteoporosis, depression and sleep disorders (*Hersh et al., 2004*).

Adult hemoglobin is a $[\alpha(2):\beta(2)]$ tetrameric haemeprotein found in erythrocytes where it is responsible for binding oxygen in the lung and transporting the bound oxygen throughout the body where it is used in aerobic metabolic pathways (*Guralink et al., 2005*).

Polycythemia develops in COPD patients because the body produces an Over-abundance of red blood cells in an attempt to compensate for decrease Oxygen level in the blood (*Caludi et al., 2005*).

1