Role of High Resolution CT in Distinguishing Different Causes of Mosaic Pattern In Lung Attenuation

Thesis Submitted for partial fulfillment of the Master Degree in Diagnostic Radiology

> By Mustafa Ahmed Khairy Mohamed (M.B.B.CH. Cairo University)

Supervisors Dr. Youssriah Yahia Sabri

Professor of Diagnostic Radiology Faculty of Medicine Cairo University

Dr. Iman Mohamed Hamdy

Lecturer of Diagnostic Radiology Faculty of Medicine Cairo University

> FACULTY OF MEDICINE CAIRO UNIVERSITY 2012

"قالوا سبحانك لا علم لنا إلا ما علمتنا إنك أنت العليم الحكيم"

سورة البقرة الآية 32

Abstract

The term mosaic attenuation or pattern refers to a patchwork of regions of differing attenuation detected on HRCT images, and may represent obliterative small airways disease, patchy interstitial disease, or occlusive vascular disease. This mosaic pattern of lung attenuation presents a challenge to the radiologist when deciding which are the abnormal regions of lung, those of low attenuation, those of high attenuation, or both and what is the possible aetiology.

Diseases from each of these categories can cause similar patterns of mosaic lung attenuation on CT scans. However, it is sometimes possible to distinguish among these categories by using additional CT findings.

Key Words :

Bronchoalveolar lavage - Kilovolt - Total lung capacity.

Acknowledgment

First and foremost, I would like to express my deepest gratitude and thankfulness to Allah for giving me the will and strength to fulfill this work and then for my family and my wife for their continuous encouragement and great help.

I would like to express my profound thanks, sincere and deep gratitude to **Dr. Youssriah Yahia Sabri** Professor of Radiodiagnosis, Cairo University for her valuable suggestions, kind guidance, encouragement, valuable time and effort in making this study possible.

I would like also to thank **DR**. Iman Mohamed Hamdy Lecturer of Radiodiagnosis, Cairo University who was very patient with me and gave me much of her time and effort.

Last but not least, my deep gratitude and thanks to all my dear professors and colleagues of the radiology department for their help and cooperation.

List Of Abbreviations

AEP	Acute esinophilic pneumonia
AIDS	Acquired immunodeficiency syndrome
AIP	Acute interstitial pneumonia
ARDS	Adult (acute) respiratory distress syndrome
BAL	Bronchoalveolar lavage
CEP	Chronic esinophilic pneumonia
CPE	Chronic pulmonary embolism
СТ	Computed tomography
СТЕРН	Chronic thromboembolic pulmonary hypertension
DLCO	Carbon monoxide diffusing capacity
DVT	Deep venous thrombosis
FEV1	Forced expiratory volume in first second
FOV	Field of view
FVC	Forced vital capacity
GGO	Ground glass opacity

GM-CSF	Granulocyte-macrophage colony-stimulating factor
HRCT	High resolution computed tomography
IPF	Idiopathic pulmonary fibrosis
Kv	Kilovolt
mA	Milliampere
MinIP	Minimum intensity projection
MSCT	Multislice computed tomography
NSIP	Nonspecific interstitial pneumonia
ОВ	Obliterative Bronchiolitis
PAH	Pulmonary arterial hypertension
PAP	Pulmonary alveolar proteinosis
PFT	Pulmonary function tests
RV	Residual volume
SD	Standard deviation
TLC	Total lung capacity
UIP	Usual interstitial pneumonia

<u>List of tables</u>

No.		Page
Table1	Diseases associated with mosaic pattern in HRCT.	14
Table 2	CTEPH compared with Idiopathic Pulmonary Arterial Hypertension.	60
Table 3	Imaging-based Diagnosis of Hypersensitivity Pneumonitis.	76
Table 4	Causes of patchy ground glass in HRCT.	78
Table 5	Regional distribution of ground glass opacities.	79
Table 6	HRCT technique used in Kasr AI –Aini.	94
Table 7	Summary of HRCT Findings.	98
Table 8	HRCT suggestive diagnoses.	99
Table 9	Mosaic pattern signs that can be helpful to differentiate between mosaic perfusion and patchy ground-glass opacities.	112

List of Figures

Figure	Content	Page
Number		
Figure 1	Expiratory HRCT shows patchy areas of air trapping in both	5
	lungs in healthy subject.	
Figure 2	Illustration of the secondary pulmonary lobular anatomy.	7
Figure 3	HRCT of the secondary pulmonary lobule.	10
Figure 4	Divisions of the bronchial tree .	12
Figure 5	Coronal reformatted HRCT showing Widespread	16
	hypoperfusion caused by airway obstruction as a result of	
	small airway disease (a) and by direct vascular obstruction	
	as a result of recurrent pulmonary embolism (b).	
Figure 6	Coronal reformatted HRCT showing Mosaic perfusion in a	17
	patient with chronic pulmonary embolism and pulmonary	
	hypertension.	
Figure 7	HRCT showing Multiple areas of air trapping in a patient	19
	with graft versus host disease.	
Figure 8	Inspiratory and expiratory HRCT in a patient with mosaic	22
	perfusion caused by chronic pulmonary embolism.	
Figure 9	Inspiratory and expiratory HRCT in a patient with mosaic	24
	pattern as a result of a patchy distribution of ground-glass	
	opacity mimicking mosaic perfusion.	
Figure 10	Diagnostic algorithm for decreased lung attenuation.	25
Figure 11	Surgical lung biopsy specimen showing small bronchiole	29
	with submucosal fibrosis, muscle hypertrophy,	
	peribronchiolar inflammation characteristic of mild	
	obliterative bronchiolitis.	

Figure 12	Surgical lung biopsy specimen demonstrates complete	29
	obliteration of bronchiolar lumen by fibrous tissue in a	
	patient with Obliterative bronchiolitis.	
Figure 13	Chest radiography in a patient with obliterative	32
	bronchiolitis A) Posteroanterior view show increased lung	
	volumes and reduction of the peripheral vascular markings.	
	(B) Lateral view shows increased retrosternal airspace and	
	flattening of the diaphragm.	
Figure 14	HRCT in a patient with obliterative bronchiolitis	34
	demonstrating geographic areas of decreased attenuation	
	and vascularity interspersed with areas of increased	
	attenuation that contain enlarged vessels, reflecting	
	pulmonary blood flow redistribution.	
Figure 15	Inspiratory & expiratory HRCT in a patient with obliterative	36
	bronchiolitis demonstrating patchy lobular and segmental	
	areas of air trapping.	
Figure 16	Minimum intensity projection (MinIP) in the assessment of	38
	obliterative bronchiolitis.	
Figure 17	HRCT showing ancillary CT findings of obliterative	39
	bronchiolitis.	
Figure 18	HRCT in a patient with obliterative bronchiolitis showing	40
	mosaic perfusion pattern and centrilobular nodules and	
	tree-in-bud opacities.	
Figure 19	Axial contrast-enhanced CT scan in a patient with CTEPH	46
	showing an eccentric wall-adherent thrombus in the right	
	interlobar pulmonary artery & right atrial and ventricular	
	enlargement with right ventricular hypertrophy.	

Figure 20	Axial contrast-enhanced CT images in a patient with CTEPH	46
	showing a wall-adherent thrombus in the right main	
	pulmonary artery and extending into the right interlobar	
	pulmonary artery.	
Figure 21	(Axial & coronal) contrast-enhanced CT & Selective right	47
	pulmonary angiogram in a patient with CTEPH showing a	
	thrombotic mass in the right main pulmonary artery and	
	bronchial artery collateral vessels.	
Figure 22	Axial contrast-enhanced CT in a 61-year-old woman with a	49
	systolic pulmonary artery pressure of 80 mm Hg shows a	
	common pattern of mosaic lung attenuation, with	
	segmental and subsegmental perfusion defects.	
Figure 23	Axial contrast-enhanced CT scans from two different	50
	patients showing an uncommon pattern of mosaic lung	
	attenuation, with hyperattenuating areas confined to the	
	perihilar lung zones and with peripheral perfusion defects.	
Figure 24	Axial contrast-enhanced CT scan in a patient with CTEPH	52
	showing a pleura-based wedge-shaped parenchymal	
	opacity caused by previous infarction.	
Figure 25	Axial contrast-enhanced CT scan in a patient with CTEPH	53
	showing a cavitary lesion with a feeding vessel caused by	
	previous infarction.	
Figure 26	Axial contrast-enhanced CT scan in a patient with CTEPH	54
	showing absence of normal distal tapering with increased	
	internal diameters of bronchi & unenhanced subsegmental	
	pulmonary artery branches.	

Figure 27	Axial contrast-enhanced CT in a patient with idiopathic	57
	pulmonary arterial hypertension showing central	
	pulmonary artery dilatation with aneurysmal enlargement of	
	the left lower lobe pulmonary artery but no evidence of	
	intraluminal thrombi.	
Figure 28	Axial contrast-enhanced CT in a patient with idiopathic	59
	pulmonary arterial hypertension showing perivascular	
	areas of hyperattenuation.	
Figure 29	Photomicrograph showing histopathologic features of	64
	hypersensitivity pneumonitis.	
Figure 30	Chest radiograph of hypersensitivity pneumonitis.	66
Figure 31	HRCT in a patient with hypersensitivity pneumonitis	67
	demonstrating extensive ground-glass opacity with a	
	centrilobular concentration.	
Figure 32	HRCT in a patient with hypersensitivity pneumonitis	67
	demonstrating ill-defined centrilobular ground-glass	
	opacities.	
Figure 33	Inspiratory & expiratory HRCT in a patient with	69
	hypersensitivity pneumonitis showing headcheese sign.	
Figure 34	Inspiratory & expiratory HRCT in a patient with	70
	hypersensitivity pneumonitis showing headcheese sign.	
Figure 35	(Axial & coronal) HRCT images in a patient with	71
	hypersensitivity pneumonitis showing combined	
	groundglass opacities and air trapping.	
Figure 36	HRCT showing hypersensitivity pneumonitis with fibrosis.	73
Figure 37	HRCT showing Progression of insidious hypersensitivity	75
	pneumonitis to fibrosis.	

Figure 38	Chest radiograph of pulmonary alveolar proteinosis showing symmetric perihilar consolidation.	82
Figure 39	Chest radiograph of pulmonary alveolar proteinosis showing asymmetric reticulonodular opacities and multifocal consolidation.	82
Figure 40	HRCT showing Crazy-paving in pulmonary alveolar proteinosis.	84
Figure 41	HRCT in a patient with pulmonary alveolar proteinosis showing patchy areas of ground-glass opacity, thickened septal lines, and consolidation.	84
Figure 42	HRCT in a patient with Goodpasture syndrome.	87
Figure 43	HRCT in a patient with acute esinophilic.	90
Figure 44	HRCT in a patient with chronic esinophilic pneumonia.	90
Figure 45	HRCT in a patient with cardiogenic edema.	92

Table Of Contents

	Page
Introduction	1
Aim of the work	3
Review of literature	
• HRCT anatomy of the lungs	4
Mosaic attenuation	13
• Mosaic pattern due to hypoperfusion & mosaic perfusion	15
 Mosaic Perfusion Associated With Ground 	
Glass	61
• Mosaic Pattern Due To Patchy Ground	
Glass	77
Patients and methods	93
Results	97
Case presentation	100
Discussion	105
Summary and recommendation	109
References	
Arabic Summary	

INTRODUCTION

The term mosaic attenuation refers to a patchwork of regions of differing attenuation detected on HRCT images, and may represent obliterative small airways disease, patchy interstitial disease, or occlusive vascular disease .This mosaic pattern of lung attenuation presents a challenge to the radiologist when deciding which are the abnormal regions of lung, those of low attenuation, those of high attenuation, or both (Lynch, 2008).

Diseases from each of these categories can cause similar patterns of mosaic lung attenuation on CT scans. However, it is sometimes possible to distinguish among these categories by using additional CT findings (**Hansell, 2001**).

In small airway disease and primary vascular lung disease the pulmonary vessels within the lucent regions of the lung are small compared with the vessels in the more opaque regions of the lung. This discrepancy in vessel size is likely due to local hypoxic reflex vasoconstniction in small-airway disease, whereas the difference in vessel size in primary vascular lung disease is due to the underlying hypoperfusion. In infiltrative lung diseases, the vessels are more uniform in size throughout the different regions of lung attenuation (**Stern et al, 1995**).

1

Thus, analysis of the size of the pulmonary vessels should be an early step in distinguishing among the causes of a CT mosaic pattern of lung attenuation (**Stern et al, 1995**).

Using paired inspiratory and expiratory CT scans is also useful for distinguishing small airway disease from a primary vascular lung disease. In small-airway disease, the lucent regions of lung seen at inspiration will remain lucent at expiration because of air trapping. Subtle areas of air trapping may be easily differentiated by comparison between inspiratory and expiratory CT scans and thus it is important to include expiratory imaging in the CT evaluation of individuals suspected of having small airways disease (**Stern et al, 1995**).