Dermoscopic Evaluation of Facial Aging in Males

Thesis

Submitted For Partial Fulfillment of Master Degree In Dermatology, Venereology And Andrology

By

Fatma Ahmed Yousef
(M.B, B. CH)
Faculty of Medicine – Ain Shams University

Under Supervision of

Prof. Dr. Hanan Mohamed Ahmed Saleh
Professor of Dermatology, Venereology and Andrology
Faculty of Medicine – Ain Shams University

Dr. Khaled Mohamed Abd El Raouf El-Zawahry
Lecturer of Dermatology, Venereology and Andrology
Faculty of Medicine – Ain Shams University

Faculty of Medicine
Ain Shams University
2014
وعَلَّمَكَ مَا لَمْ تَكُنْ تَعْلَمُ وَكَانَ فَضْلُ اللَّهِ عَلَيْكَ عَظِيمًا

فضّلُ اللهِ عَلَيْكَ عَظِيمًا

صدق الله العظيم

سورة النساء آية (113)
List of Contents

<table>
<thead>
<tr>
<th>List of Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Abbreviations</td>
<td>I</td>
</tr>
<tr>
<td>List of Tables</td>
<td>II</td>
</tr>
<tr>
<td>List of Figures</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Aim of the Work</td>
<td>6</td>
</tr>
<tr>
<td>Review of literature:</td>
<td></td>
</tr>
<tr>
<td>❍ Chapter (1): Dermoscopy</td>
<td>7</td>
</tr>
<tr>
<td>o Types and Indications of Dermoscopy</td>
<td>11</td>
</tr>
<tr>
<td>o Physics and Essential Components of a Dermoscope</td>
<td>18</td>
</tr>
<tr>
<td>o Dermoscopic Criteria</td>
<td>21</td>
</tr>
<tr>
<td>o Uses of Dermoscopy</td>
<td>40</td>
</tr>
<tr>
<td>❍ Chapter (2): Skin Aging</td>
<td>50</td>
</tr>
<tr>
<td>o Pathomechanisms of Intrinsic Skin Ageing</td>
<td>51</td>
</tr>
<tr>
<td>o Clinical Picture of Intrinsically Aged Skin</td>
<td>53</td>
</tr>
<tr>
<td>o Histologic Characteristics of Intrinsically Aged Skin</td>
<td>58</td>
</tr>
<tr>
<td>o Pathomechanisms of Photoaging</td>
<td>63</td>
</tr>
<tr>
<td>o Clinical Picture of Photoaged Skin</td>
<td>72</td>
</tr>
<tr>
<td>o Histological Changes in Extrinsically Aged Skin</td>
<td>83</td>
</tr>
<tr>
<td>o Skin Aging Induced by Other Exogenous Factors</td>
<td>85</td>
</tr>
<tr>
<td>o Aged Face</td>
<td>87</td>
</tr>
<tr>
<td>Subjects and Methods</td>
<td>98</td>
</tr>
<tr>
<td>Results</td>
<td>107</td>
</tr>
<tr>
<td>Dermoscopic Pictures</td>
<td>160</td>
</tr>
<tr>
<td>Discussion</td>
<td>172</td>
</tr>
<tr>
<td>Conclusion and Recommendations</td>
<td>185-186</td>
</tr>
<tr>
<td>Summary</td>
<td>187</td>
</tr>
<tr>
<td>References</td>
<td>193</td>
</tr>
<tr>
<td>Arabic Summary</td>
<td>--</td>
</tr>
</tbody>
</table>
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbrev.</th>
<th>Full Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP-1</td>
<td>Activator protein 1</td>
</tr>
<tr>
<td>BCC</td>
<td>Basal cell carcinoma</td>
</tr>
<tr>
<td>Bp</td>
<td>Base pairs</td>
</tr>
<tr>
<td>CPDs</td>
<td>Cyclobutane pyrimidine dimmers</td>
</tr>
<tr>
<td>CTD</td>
<td>Connective tissue disease</td>
</tr>
<tr>
<td>CTGF</td>
<td>Connective tissue growth factor</td>
</tr>
<tr>
<td>DAS</td>
<td>Dermoscopic aging scale</td>
</tr>
<tr>
<td>DLE</td>
<td>Discoid lupus erythematosus</td>
</tr>
<tr>
<td>DPAS</td>
<td>Dermoscopic photoaging scale</td>
</tr>
<tr>
<td>ECM</td>
<td>Extracellular matrix</td>
</tr>
<tr>
<td>ERK</td>
<td>Extracellular signal-regulated kinases</td>
</tr>
<tr>
<td>LCs</td>
<td>Langerhan's cells</td>
</tr>
<tr>
<td>LED</td>
<td>Light emitting diodes</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen-activated protein kinases</td>
</tr>
<tr>
<td>MMPs</td>
<td>Matrix metalloproteinases</td>
</tr>
<tr>
<td>NF-kB</td>
<td>Nuclear factor kappa-light-chain-enhancer of activated B cells</td>
</tr>
<tr>
<td>PSLs</td>
<td>Pigmented skin lesions</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>SCC</td>
<td>Squamous cell carcinoma</td>
</tr>
<tr>
<td>SEI</td>
<td>Sun exposure index</td>
</tr>
<tr>
<td>SSP</td>
<td>Stellate spontaneous pseudoscar</td>
</tr>
<tr>
<td>TGF</td>
<td>Transforming growth factor</td>
</tr>
<tr>
<td>TGF-b</td>
<td>Transforming growth factor b</td>
</tr>
<tr>
<td>TIMPs</td>
<td>Tissue inhibitor of matrix metalloproteinases</td>
</tr>
<tr>
<td>TSP-1</td>
<td>Thrombospondin-1</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>VEGF</td>
<td>Vascular endothelial growth factor</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table No</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Showing advantages and disadvantages of a dermoscope</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>Showing advantages and disadvantages of a Stereomicroscope</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>Showing advantages and disadvantages of a Stereomicroscope</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>Dermoscopy Colors and location of melanin</td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>Vascular structures seen by dermoscopy</td>
<td>33</td>
</tr>
<tr>
<td>6</td>
<td>Demonstrate the histopathologic correlation of the principal dermoscopic structures</td>
<td>37</td>
</tr>
<tr>
<td>7</td>
<td>Illustrate dermoscopic structures seen in pigmented and non pigmented skin lesion</td>
<td>38-39</td>
</tr>
<tr>
<td>8</td>
<td>Characteristics of different skin phototypes</td>
<td>73</td>
</tr>
<tr>
<td>9</td>
<td>Glogau's photoaging classification</td>
<td>75</td>
</tr>
<tr>
<td>10</td>
<td>Dermoscopic photoaging scale</td>
<td>97</td>
</tr>
<tr>
<td>11</td>
<td>Description of personal characteristics among study group I (30-39 years)</td>
<td>108</td>
</tr>
<tr>
<td>12</td>
<td>Description of personal characteristics among study group II (50-59 years)</td>
<td>109</td>
</tr>
<tr>
<td>13</td>
<td>Description of personal characteristics among study group III (≥60 years)</td>
<td>110</td>
</tr>
<tr>
<td>14</td>
<td>Comparison between three study groups as regard personal characteristics.</td>
<td>112</td>
</tr>
<tr>
<td>15</td>
<td>Description of dermoscopic criteria among study group I</td>
<td>115</td>
</tr>
</tbody>
</table>
List of Tables (Cont.)

<table>
<thead>
<tr>
<th>Table No</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Description of dermaoscopic criteria among study group II (50-59 years)</td>
<td>117</td>
</tr>
<tr>
<td>17</td>
<td>Description of dermaoscopic criteria among study group III (≥60 years)</td>
<td>119</td>
</tr>
<tr>
<td>18</td>
<td>Comparison between three study groups as regard dermoscopic finding</td>
<td>123</td>
</tr>
<tr>
<td>19</td>
<td>Comparison between group I cases according to skin type as regard dermoscopic finding</td>
<td>127</td>
</tr>
<tr>
<td>20</td>
<td>Comparison between group II cases according to skin type as regard dermoscopic finding</td>
<td>130</td>
</tr>
<tr>
<td>21</td>
<td>Comparison between group III cases according to skin type as regard dermoscopic finding</td>
<td>132</td>
</tr>
<tr>
<td>22</td>
<td>Comparison between group I cases according to smoking status as regard dermoscopic finding</td>
<td>134</td>
</tr>
<tr>
<td>23</td>
<td>Comparison between group II cases according to smoking status as regard dermoscopic finding</td>
<td>136</td>
</tr>
<tr>
<td>24</td>
<td>Comparison between group III cases according to smoking status as regard dermoscopic finding</td>
<td>139</td>
</tr>
<tr>
<td>25</td>
<td>Comparison between group I cases according to sun exposure as regard dermoscopic finding</td>
<td>141</td>
</tr>
<tr>
<td>26</td>
<td>Comparison between group II cases according to sun exposure as regard dermoscopic finding</td>
<td>145</td>
</tr>
</tbody>
</table>
List of Tables (Cont.)

<table>
<thead>
<tr>
<th>Table No</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>Comparison between group III cases according to sun exposure as regard dermoscopic finding</td>
<td>148</td>
</tr>
<tr>
<td>28</td>
<td>Comparison between group I cases according to Glogau’s scale as regard dermoscopic finding</td>
<td>150</td>
</tr>
<tr>
<td>29</td>
<td>Comparison between group II cases according to Glogau’s scale as regard dermoscopic finding</td>
<td>153</td>
</tr>
<tr>
<td>30</td>
<td>Comparison between group III cases according to Glogue scale as regard dermatoscopic findings</td>
<td>156</td>
</tr>
<tr>
<td>31</td>
<td>Comparison between different face regions among group I cases as regard number of dermoscopic findings</td>
<td>157</td>
</tr>
<tr>
<td>32</td>
<td>Comparison between different face regions among group II cases as regard number of dermoscopic findings</td>
<td>158</td>
</tr>
<tr>
<td>33</td>
<td>Comparison between different face regions among group III cases as regard number of dermoscopic findings</td>
<td>159</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure No</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dermoscopes with image capturing facility</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>Optics of dermoscope</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>The interpretation of colours seen with a dermatoscope</td>
<td>22</td>
</tr>
<tr>
<td>4</td>
<td>Vascular patterns in tumoral lesions</td>
<td>34</td>
</tr>
<tr>
<td>5</td>
<td>Dermoscopy of Scabies</td>
<td>47</td>
</tr>
<tr>
<td>6</td>
<td>Dermoscopy of Sebaceous hyperplasia</td>
<td>47</td>
</tr>
<tr>
<td>7</td>
<td>Dermoscopy of Actinic porokeratosis</td>
<td>48</td>
</tr>
<tr>
<td>8</td>
<td>Red lagoons in hemangioma (left) and thrombosed black lagoons in angiokeratoma (right)</td>
<td>48</td>
</tr>
<tr>
<td>9</td>
<td>Expression wrinkles</td>
<td>54</td>
</tr>
<tr>
<td>10</td>
<td>Gravitational wrinkles</td>
<td>55</td>
</tr>
<tr>
<td>11</td>
<td>Differences in skin structure between young and aged skin</td>
<td>58</td>
</tr>
<tr>
<td>12</td>
<td>Model schematically depicts factors of pathogenic relevance for skin ageing</td>
<td>71</td>
</tr>
<tr>
<td>13</td>
<td>Atrophic response to photodamage</td>
<td>74</td>
</tr>
<tr>
<td>14</td>
<td>The Glogau wrinkle scale</td>
<td>76</td>
</tr>
<tr>
<td>15</td>
<td>The back of the hands of a 23-year-old woman (top left corner) without any signs of photoaging and of a 46-year-old woman (top right corner) with lentigines and fine wrinkles</td>
<td>76</td>
</tr>
<tr>
<td>16</td>
<td>Deep furrows, solar elastosis, focal hypopigmentation and solar lentigines in the face of a 66-year-old patient with Fitzpatrick’s skin type II</td>
<td>77</td>
</tr>
<tr>
<td>17</td>
<td>Photodamaged skin. H&E staining of photodamaged skin</td>
<td>84</td>
</tr>
<tr>
<td>18</td>
<td>Differences between the facial appearance of a 23-year-old Causacian woman vs the same 61-year-old Causasian woman</td>
<td>88</td>
</tr>
</tbody>
</table>
List of Figures (Cont.)

<table>
<thead>
<tr>
<th>Figure No</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Facial separation diagram for dermoscopic examination</td>
<td>103</td>
</tr>
<tr>
<td>20</td>
<td>a-Dermoscope view lens</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>b- Dermoscope contact lens</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Attachment piece</td>
<td>104</td>
</tr>
<tr>
<td>22</td>
<td>Skin types among the three group cases</td>
<td>113</td>
</tr>
<tr>
<td>23</td>
<td>Comparison between the 3 groups as regard yellow papules and yellowish discoloration</td>
<td>124</td>
</tr>
<tr>
<td>24</td>
<td>Comparison between the 3 groups as regard criss-cross wrinkles, deep wrinkles, senile comedones and telangectasia</td>
<td>124</td>
</tr>
<tr>
<td>25</td>
<td>Comparison between the 3 groups as regard diffuse erythema</td>
<td>125</td>
</tr>
<tr>
<td>26</td>
<td>Correlation between skin types and telangectasia in group I cases</td>
<td>128</td>
</tr>
<tr>
<td>27</td>
<td>Correlation between skin types and diffuse erythema in group II cases</td>
<td>131</td>
</tr>
<tr>
<td>28</td>
<td>Correlation between smokers and non smokers as regard senile comedones in group II cases</td>
<td>137</td>
</tr>
<tr>
<td>29</td>
<td>Correlation between sun exposure and yellow papules in group I</td>
<td>142</td>
</tr>
<tr>
<td>30</td>
<td>Correlation between sun exposure and DPAS score in group II</td>
<td>146</td>
</tr>
<tr>
<td>31</td>
<td>Correlation between Glogue scale and DPAS score among group I</td>
<td>151</td>
</tr>
<tr>
<td>32</td>
<td>Correlation between senile comedones and Glogue scale in group II</td>
<td>154</td>
</tr>
<tr>
<td>33</td>
<td>Showing Irregular pigmentation in the form of hypopigmented macules between hyperpigmented patches, (a) a case group I, (b) a case group II</td>
<td>160</td>
</tr>
<tr>
<td>34</td>
<td>Showing telangiectases (red lines in different configurations), (a) a case of group III, (b) a case of group II</td>
<td>161</td>
</tr>
</tbody>
</table>
List of Figures (Cont.)

<table>
<thead>
<tr>
<th>Figure No</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>Showing more obvious deep wrinkles seen by dermoscopy than the naked eye assessment, (a) a case of group II, (b) a case of group III</td>
<td>162</td>
</tr>
<tr>
<td>36</td>
<td>Showing more pronounced superficial wrinkles seen by dermoscopy than the naked eye assessment in a group I case</td>
<td>163</td>
</tr>
<tr>
<td>37</td>
<td>Showing more obvious criss-cross wrinkles seen by dermoscopy than the naked eye assessment. (a) a case of group II, (b) a case of group III</td>
<td>164</td>
</tr>
<tr>
<td>38</td>
<td>(a) Showing senile comedones (Follicle openings with brown-black keratin plug in the middle) on periorbital region in a case of group II, (b) a case of group III showing senile comedones (black arrow) and telangiectases (blue arrow)</td>
<td>165</td>
</tr>
<tr>
<td>39</td>
<td>(a) A case of group III showing yellow papule (more pronounced yellow dots seen with dermoscopy than the naked eye assessment) (black arrow), yellowish discoloration (blue arrow) and senile comedones (white arrow), (b) a case of group II showing yellowish discoloration (blue arrow) and yellow papule (black arrow), (c) a case of group II showing senile comedones (white arrow), yellowish discoloration (blue arrow), and yellow papule (black arrow)</td>
<td>166</td>
</tr>
<tr>
<td>40</td>
<td>(a) a case of group II showing more pronounced yellow pigmentation seen with dermoscopy than the naked eye assessment (black arrow), (b) a case of group III showing yellow discoloration (black arrow), yellow papule (red arrow), deep wrinkle (blue arrow) and criss-cross wrinkle (white arrow)</td>
<td>167</td>
</tr>
<tr>
<td>41</td>
<td>Showing white line (white, clear, irregular extensions) in a case of group II</td>
<td>168</td>
</tr>
<tr>
<td>42</td>
<td>Solar lentigo (light-brown, intertwined, tight, pigment network) both are cases of group III.</td>
<td>169</td>
</tr>
<tr>
<td>Figure No</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>43</td>
<td>Dermoscopy of Seborrheic keratosis showing Fissures, crypts and sharp demarcation in a case of group II</td>
<td>170</td>
</tr>
<tr>
<td>44</td>
<td>Dermoscopy of Seborrheic keratosis showing comedo-like openings (Black arrow) and Milia-like cyst (White arrow) a case of group III.</td>
<td>170</td>
</tr>
<tr>
<td>45</td>
<td>Showing diffuse erythema (redness of the skin due dilatation of the blood vessels) in a case of group II</td>
<td>171</td>
</tr>
<tr>
<td>46</td>
<td>Showing whitish scar-like stellate areas (white arrow) surrounded by homogeneous reddish areas with dark red small lacunae (Blue arrow) and linear vessels (black arrow) in a case of group II</td>
<td>171</td>
</tr>
</tbody>
</table>
Acknowledgement

First, and foremost, my deepest gratitude and thanks should be offered to "Allah", the Most Kind and Most Merciful, for giving me the strength to complete this work.

I would like to express my sincere gratitude to Prof. Dr. Hanan Mohamed Ahmed Saleh, Professor of Dermatology, Venereology and Andrology, Faculty of Medicine – Ain Shams University, for her continuous support and guidance for me to present this work. It really has been an honor to work under her generous supervision.

I acknowledge with much gratitude Dr. Khaled Mohamed Abd El-Raoof El Zwahry, Lecturer of Dermatology, Venereology and Andrology, Faculty of Medicine – Ain Shams University, for his great supervision and unlimited help to provide all facilities to accomplish this work.

Fatma Ahmed Yousef
INTRODUCTION

Skin is the outermost part of the human body. It protects the body from infection, injury, and water loss, while helping regulate body temperature. Additionally, the skin maintains homeostasis and produces vitamin D. Skin performance is impaired with age and visual beauty is lost (Choi et al., 2014). Besides, skin is the main organ in which age related changes are visible (Ramos-e-Silva and da Silva Carneiro, 2007; Saral, 2008).

Skin aging is a complex process, there are two independent, clinically and biologically distinct, processes affecting the skin simultaneously. The first is the innate or intrinsic aging, ‘the biologic clock’ that affects the skin by slow, irreversible tissue degeneration. The second process is the extrinsic aging, which is the result of exposure to outdoor elements, mainly, ultraviolet (UV) irradiation; namely ‘the photoaging (Farage et al., 2008).

Extrinsic skin aging is mainly a consequence of cumulative UV exposure of the skin, but can be accelerated by nicotine abuse and environmental hazardous compounds. They cause specific alterations like elastosis and dyschromatic pigment shifts (Placzek et al., 2004; Okazaki et al., 2005).
The rate of aging is significantly different among different populations and even among different anatomical sites in a single individual. Many theories have tried to explain the aging process, but the most plausible of these concentrate on DNA damage and the concomitant repair process, which induce genome-wide epigenetic changes leading to cell senescence, loss of proper cell function, and genomic aberrations (Sinclair and Oberdoerffer, 2009).

The following aspects are discussed in several theories on intrinsic skin aging: Cellular aging (Hayflick-Limit) and shortening of telomeres, mutations of mitochondrial DNA, oxidative stress, genetic mutations and decrease of several hormone levels (Makrantonaki and Zouboulis, 2007).

UVA-light is absorbed by cellular chromophores, such as urocanic acid, elanin precursors and riboflavin. These lightexposed chromophores generate ROS, which damage lipids, proteins and DNA. UVA-light is exceptionally relevant in photoageing because of its high penetration depth (Klotz et al., 2001).

The clinical manifestations of intrinsic aging are fine wrinkles, thin and transparent skin, loss of underlying fat leading to hollowed cheeks and eye sockets, dry and itchy
skin, inability to perspire sufficiently, hair graying, hair loss or hirsutism, and thinning of nail plates (Zouboulis and Makrantonaki, 2011).

Clinically, naturally aged skin is smooth, pale and finely wrinkled. Nevertheless, Photoaging affects sun-exposed areas and is characterized clinically by fine and coarse wrinkling, roughness, dryness, laxity, telangiectasias, loss of tensile strength, pigmentary changes and the development of a variety of benign and malignant neoplasms (Sjerobabski-Masnec and Situm, 2010).

Photodamaged skin exhibits variable epidermal thickness and solar elastosis, i.e. accumulation of degraded and disorganized elastic fibers. The amount of mature collagen and its overall density decrease, and partially degraded collagen accumulates, resulting in the fibrous network becoming coarser (Yaar and Gilchrest, 2007).

Dermoscopy is a noninvasive diagnostic technique used for the in vivo observation of skin lesions (Lacarrubba et al., 2010). It is a well-established skin examination tool with known dermoscopic features for many diagnoses (Luk et al., 2014). Dermoscopes are modified magnifying devices that permit the visualization of pigmented structures or vessels in the epidermis and superficial dermis and generally employ