EVALUATION OF LAPAROSCOPIC MANAGEMENT OF COLORECTAL CANCER

Essay

Submitted for partial fulfillment of Master degree in General Surgery

By

Hassan Gad El-Mawla Ahmed Mohamed

M.B., B.Ch, Faculty of Medicine - Ain Shams University

Supervisors Prof. Dr. Mohamed Naguib Hassan Atia

Professor of General Surgery Faculty of medicine - Ain Shams University

Ass. Prof. Dr. Wael Abdel-Azeem Jumuah

Ass. Professor of General Surgery Faculty of medicine - Ain Shams University

Dr. Mahmoud Zkaria Abdel-Aziz

Lecturer of General Surgery Faculty of Medicine - Ain Shams University

> Faculty of medicine Ain Shams University 2014

First and above all thanks to ALLAH.

I would like to express my endless gratitude and appreciation to my eminent professor, **Prof. Dr. Mohamed Naguib Hassan Atia,** Professor of General Surgery Faculty of medicine - Ain Shams, for giving me the honor to work under his supervision and from whom I did learn a lot. He encouraged me, removed all the obstacles from my way and pushed me to achieve success.

My sincere thanks to **Prof. Dr. Wael Abdel-Azeem Jumuah,** Assistant Professor of General Surgery, Faculty of medicine - Ain Shams for his continuous guidance, honest help and endurance that made this thesis come to light.

I would also like to express my gratefulness to Dr. Mahmoud Zkaria Abdel-Aziz, Lectura of General Surgery Faculty of Medicine - Ain Shams, for his precious advice and support throughout this whole work.

Also I would like to thank my **Family** who stood behind me to finish this work and for their great support.

🔉 Hassan Gad El-Mawla Ahmed Mohamed

List of Content

Title

Page No

List of Tablesii
List of Figures iii
List of abbreviationvi
Introduction11
Aim of the work4
• Surgical Anatomy of the Colon5
Laparoscopic Anatomy of the Colon22
Pathology of Colo- Rectal Cancer
Diagnosis of Colorectal Carcinoma56
Surgical Management of Colorectal Cancer65
Laparoscopic colonic resection Diagnostic
laparoscopy79
Summary 115
References119
Arabic Summary

List of Tables

Table No.	Title	Page No.
Table (1): Clinicopatholog	ic classification of colorect	tal cancer (modified Dukes')
(Corman, 1984)		
Table (2): TNM classification	on of tumours of the colon	and rectu44
Table (3): Specific instrum	ents recommended for di	iagnostic laparoscopy (Koea et
al., 2000)		

List of Figures

Fig. No.	Title Page No.	
Fig. (1):	Average lengths and diameters of the segments of the large intesting	7
$\mathbf{F}_{\mathbf{a}}$ (2).	the large intestine	
Fig. (2):	The hepatic flexure	10
Fig. (3):	The splenic flexure and left colon are then mobilized, exposing the pancreas and duodenum	11
Fig. (4):	The sigmoid mesentery	13
Fig. (5):	The vascular supply to the colon is from the superior and inferior mesenteric arteries. The distribution of these arteries and their branches is shown	16
Fig. (6):	Venous drainage of the colon and rectum	19
Fig. (7):	(Innervation of the colon and rectum)	
Fig. (8):	By lifting up the lower edge of the liver, the porta hepatic and the gallbladder may be seen	
Fig. (9):	Just below the liver in a thin patient, the hepatic flexure, duodenum, and pancreatic head may be seen	
Fig. (10):	The splenic flexure may be seen by lifting the omentum cephalad	25
Fig. (11):	By retracting the small bowel to the right side of the abdomen, the attachments of the sigmoid colon and its main vessels may be seen	26
Fig. (12):	With a patient in the Trendelenburg position and the right side tilted upward	27
Fig. (13):	Vessels of the transverse colon and major structures in this region may be seen	27
Fig. (14):	Lifting up on the right uterine, adnexa permits appreciation of the relationships of these structures to the pelvis	28
Fig. (15):	A, Pedunculated adenoma showing a fibrovascular stalk lined by normal colonic mucosa and a head that contains abundant dysplastic epithelial glands, hence the blue color with the H & E stain	38
Fig. (16).	Positions of the surgical team and equipment for the diagnostic laparoscopy at the beginning of the procedure	81

Fig. (17):	Cannula positions for the diagnostic laparoscopy. If liver ultrasound is used, the right cannula should be a 10-mm size (asterisk)
Fig. (18):	A laparoscopic ultrasound probe can be readily used to assess the liver and retroperitoneal structures during diagnostic laparoscopy
Fig. (19):	"Rtmning" of the small bowel begins with appropriate positioning of the patient
Fig. (20):	Running the bowel using the "hand-over-hand" technique: The right-handed grasper
Fig. (21):	Diagnostic laparoscopy nearly always affords an excellent view of the uterus, Fallopian tubes, and ovaries 88
(Figure 22)	: Port setup for right side procedures
(Figure 23)): Medial to lateral dissection, with identification of the
	duodenum
Fig. (24):	Dissecting plane from the medial or lateral sides of the sigmoid colon optimally involve sweeping the Toldt's fascia posteriorly (thick gray line)
Fig. (25):	Next, the inferior mesenteric vein and the left colic artery can be simultaneously divided with an endoscopic stapler from the right side. Note that the ureter and gonadal vessels are clear of the stapler
Fig. (26):	With careful traction and countertraction by the surgeon and the assistant, the boundary of the left side of the rectum between peritoneum and mesorectum is dissected (arrow)
Fig. (27):	Next, the peritoneal refl ection is incised, exposing Denonvilliers' fascia and protecting the seminal vesicles or vaginal wall
Fig. (28):	The lateral ligaments are placed under tension by drawing the rectum to the right side of the pelvis, then this area is dissected, carefully preserving the nerve trunks heading distally
Fig. (29):	With tension applied to the left side of the rectum at the proposed transaction line, the mesorectum is divided using the laparoscopic coagulation shears

List of Figures (Cont...)

Fig. No.	Title	Page No.
Fig. (30):	An endoscopic linear stapler is introdu suprapubic cannula and fi red across the line at right angles to the bowel	e distal resection
Fig. (31):	When the ureter cannot be easily identifiside, dissection should then proceed later and placing a cotton gauze over the ureter	rally, identifying
Fig. (32)	The IMV is ligated only if the ureter is protected.	
Fig. (33):	The lateral attachments of the sigmoid incised sharply	
Fig. (34):	Using triangulating tension, the sigmoin incised up to the bowel edge	
Fig. (35)	The proximal resection line is next is endoscopic stapler	
Fig. (36):	Posterior mobilization is initiated nex promontory, carefully sweeping off the h branches which may be tented upward dissection (arrows)	ypogastric nerve l in the line of
Fig. (37):	Just as in the rectal mobilization, the of the operation is most safely per pattern of 1) posterior, 2) lateral, a dissection	erformed in a and 3) anterior

List of Abbreviations

AJCC	American Joint Committee on Cancer
САР	The College of American Pathologists
CAP	
	charge-coupled device
CEA	Carcinoembryonic Antigen
CI	Confidence interval
COLOR	Colon cancer Laparoscopic or Open Resection
COST	Clinical Outcomes of Surgical Therapy
DCBE	Double contrast barium enema
DCC	deleted in colon cancer
DRE	Digital rectal exam
FAP	Familial adenomatous polyposis
FOBT	Fecal occult blood test
HALS	Hand-assisted laparoscopic surgery
HNPCC	Hereditary nonpolyposis colorectal cancer
HRT	hormone replacement therapy
IAP	intra-abdominal pressure
LCD	liquid crystal display
MSI	Microsatellite instability
PCR	polymerase chain reaction
PET	Positron emission tomography
PP	Pneumoperitoneum
RGB	Red, green, and blue
TEM	Transanal endoscopic microsurgery
	Clinicai Outcomes of Surgicai Therapy (COST) and
	Conventional)
TME	Total mesorectal excision
UICC	The International Union Against Cancer
VEGF	Vascular endotheial growth factor

INTRODUCTION

Colorectal cancer is the third most common malignant disease and the second most frequent cause of cancer related death in the western countries, with an estimated 101, 340 new cases (colon cancer only), and 49, 380 deaths (colon and rectal cancers combined) in the United States in 2011 (*American CANCER Society, 2011*).

Colon cancer is becoming common in Egypt. It also has unique characteristics that differ from those reported in the western countries (*Yamato et al., 200 Y*).

Laparoscopic surgery has revolutionized a number of operations including cholecystectomy and Nissen fundoplication. The first laparoscopic colonic resection was performed by Jacobs in Miami,Florida, in June of 1990. However, the uptake of laparoscopic approaches to colorectal surgery has been slow (*Jacobs et al., 1991*).

Early concerns were raised with regard to all aspects of cancer surgery, including morbidity, mortality, quality of life, local recurrence and a problem specific to laparoscopic surgery, port site recurrence, which have tempered the initial enthusiasm for this technique (*Leung et al., 2004*).

However, the results of a large randomized controlled

trial of laparoscopic surgery for colorectal cancer and other studies have suggested that many of these concerns are unfounded. Other issues to be considered when introducing routine laparoscopic colorectal surgery are the impact on operating times, training and cost implications to the hospital *(Enker et al., 2002)*.

The applicability of laparoscopy to colorectal diseases continues to expand. Laparoscopic approach should be mainly considered for patients with benign conditions. For colorectal cancer, results from randomized trials so far have been favorable (*Aziz, 2006*).

In advanced colorectal carcinoma using laparoscopic approach is controversial because of the technical difficulties in dissection. On the other hand, it might facilitate effective palliation in selected patients with the avoidance of a major laparotomy (*Yamato et al, 200 Y*).

There are three basic roles of laparoscopic surgery for patients with colorectal cancer. First, although infrequently needed prior to therapy, diagnostic or staging laparoscopy may be valuable in certain colorectal cancer patients. Second, the laparoscopic approach may offer several attractive features for the palliative management of patients with incurable colorectal cancer. Finally, although this issue is the most controversial, there are theoretic but unproved advantages of using laparoscopic techniques for curative colorectal cancer therapy (*Milsom et al., 2004*).

In open surgery bleeding is usually controlled by pressure, suturing, ligation, packing or a combination of these methods. In laparoscopic surgery the same techniques can be used, but they are much more difficult to perform and not always successful, which often lead to conversion to open surgery. Injury to the major blood vessels is a rare complication in open surgery, also not common in laparoscopic colonic surgery *(Hartley and Mansson, 2002).*

Large, multi – center studies, generally including data from specialized centres, suggest that laparoscopic colorectal surgery is safe and offers potential short- term benefits to patients without adversely affecting the long-term outcomes following resection for colorectal cancer (*Jemal et al.*, 200 ⁴).

AIM OF THE ESSAY

The aim of this essay is to evaluate the role of laparoscopy in the surgery of colorectal carcinoma, to review the recent advances in laparoscopic colectomy, and to evaluate the new equipments, techniques, advantages, disadvantage of laparoscopic colectomy versus conventional open surgical technique.

SURGICAL ANATOMY OF THE COLON

Special points in surgical anatomy of the Colon:

The large intestine extends from the terminal ileum to the anus. To be more embryologically and anatomically correct, it extends to the pectinate (dentate) line, in other words, to the proximal 2 cm of the anal canal (*Jamieson* et al., 2006).

The classic divisions of the colon are the cecum, the colon proper, the rectum, and the anal canal. The first 6 cm of the large intestine just below the ileocecal valve, the ascending colon, and the hepatic flexure form a surgical unit, the right colon (right colectomy). The distal transverse colon, splenic flexure, and descending and sigmoid colons constitute the left colon (left colectomy) (*Skandalakis et al., 2009*).

Length and Diameter of the Large Intestine:

Textbooks of anatomy offer no agreement about the length of the segments of the large intestine. Estimates of the length of the large bowel average about 1.3-1.8 m. According to Gray's Anatomy (37th ed.), the length from the end of the distal ileum to the anus is about 1.5 m. *Goligher* estimated the length of the colon to be $4^{1}/_{2}$ ft (1.25 m) (*Skandalakis et al., 2009*).

Saunders et al. reported intra operative measurements of colonic anatomy in 118 patients, reporting a mean total colonic length of 114. 1 cm (range 68-159 cm). A free sigmoid loop was not present in 20 patients (17%) because of adhesions.Ten patients (8%) had a descending mesocolon of 10 cm or more, and 11 patients (9%) had an ascending mesocolon of 10 cm or more. Twenty-four patients (20%) had mobile splenic flexures. The mid-transverse colon reached the symphysis pubis in 34 patients (29%) (Saunders et al., 1995).

The caliber of the large bowel is greater close to the cecum, it gradually gets smaller toward the rectum, then dilates again at the rectal ampulla just above the surgical anal canal. A sigmoid colon loop is occasionally as wide as a loop of terminal ileum(*Skandalakis et al., 2009*).