
  
PPeerrffoorrmmaannccee--BBaasseedd  RReessttrruuccttuurriinngg  ooff  DDiissttrriibbuutteedd  
OObbjjeecctt--OOrriieenntteedd  CCoommppuuttaattiioonnss  ffoorr  aa  CClluusstteerr  ooff  

MMuullttiipprroocceessssoorrss  
 

 
A Thesis Submitted to the Department of Scientific Computing, Faculty 
of Computer and Information Sciences, Ain Shams University, in Partial 
Fulfillment of the Requirements for the Doctorate Degree of Computer 

and Information Sciences 
 

By 
 

Safwat Helmy Mohammed Hamad 
M.Sc. Degree in Scientific Computing (2004). 

Teaching Assistant, Department of Scientific Computing, 
Faculty of Computer and Information Sciences, Ain Shams University. 

 
Supervised by 

 

Prof. Dr. MOHAMMED ESSAM KHALIFA 
Dean of Faculty of Computer and Information Sciences, 

Ain Shams University 
 

Prof. Dr. REDA AMMAR 
Head of Computer Science and Engineering Department, 

University of Connecticut - USA 
 

Prof. Dr. ElSayed Abdel Aziz Soleit 
Professor, Department of Scientific Computing, 
Faculty of Computer and Information Sciences, 

Ain Shams University 
 
 
 

2008 

 AIN SHAMS UNIVERSITY 
FACULTY OF COMPUTER & INFORMATION SCIENCES 
DEPARTMENT OF SCIENTIFIC COMPUTING 

 



ACKNOWLEDGMENTS 

 
All praise and thanks to Allah, who gave me the guidance, 

the patience and the support to attain this achievement. 
I want to express my deep gratitude to Prof. Dr. Mohammed 

Essam Khalifa for his continuous encouragement, understanding 
and support. He stood by me throughout all the difficulties I 
faced during the last few years. Thank you Prof. Dr. Esaam. 

I am deeply indebted to, Prof. Reda Ammar, for his endless 
help, and support. His advice and insight have been invaluable 
throughout my entire time of research. Our weekly meetings 
gave me academic guidance and provided the milestones that 
helped to develop my research skills.  

I would like to extend my thanks to my associate advisor 
Prof. Dr. ElSayed Soleit, for his support and helpful 
suggestions. In addition, I would like to thank Prof. Tahany 
Fergany, who gave me a lot of her time and effort. I cannot 
possibly thank her enough. I won’t forget to give my deep 
thanks to Prof. Dr. Mohammed Said Abdel-Wahab for his great 
effort in accelerating the formal procedures of dissertation 
submission.  

Finally, this dissertation would have never been possible 
without the support of my wife. I am really grateful to her for 
her patience; caring, understanding and encouragement made 
my mission much easier and supported me during the ups and 
downs of this work.  

 



 

ii 

 

Abstract 

 

Over the last few years, designers and engineers utilized the 
Object-Oriented (OO) approach in developing distributed 
software systems for solving complex problems in various 
scientific fields. The initial design of the Distributed OO (DOO) 
application does not necessarily have the best class distribution. 
In such class of problems, the solution is possible through two 
approaches: either to reconfigure the hardware to match the 
software components (hardware reconfiguration), or to 
reconfigure the software structure to match the available 
hardware (software restructuring).  

Software restructuring is the process of re-organizing the 
logical structure of existing software systems in order to 
improve particular quality attributes of software products. 
Previous restructuring techniques have not been considered 
DOO software. In this research, we introduce a methodology for 
efficiently restructuring the DOO software classes on a specific 
distributed system. The presented process is achieved in a set of 
consecutive steps. In the first step, the Distributed Object 
Oriented Software (DOO) is analyzed to evaluate relationships 
and interactions among different system classes and then 
modeled as a class dependency graph. The second step is 
concerned with identifying clusters of a dense community of 
classes within the DOO system that have low coupling and are 
suitable for distribution. Next, the generated clusters are merged 
into grains. Those grains are then mapped onto the nodes of the 
multiprocessor system such that the amount of communication 
among classes is minimized.  



 

iii 

Classical techniques and methodologies of performance 
analysis are unsuitable to capture performance behavior of 
Object-Oriented (OO) systems. In this thesis, we recommended 
to use the Distributed Object-Oriented Performance (DOOP) 
model as a powerful analytical technique for the assessment of 
relationships between system classes. Once the DOOP model is 
used to evaluate the inter-class communication costs all over the 
DOO application under study, these values can be used to 
generate the Class Dependency Graph (CDG) of the given OO 
application. This modeling step should be done very carefully 
and precisely since this CDG will be the basis of all the coming 
phases in our proposed restructuring approach. 

The next restructuring step involves decomposing the OO 
system into subsystems that have low coupling and are more 
suitable for distribution. A clustering technique based on 
recursive spectral graph bi-partitioning was proposed to create a 
suggested grouping of subsystems that are convenient for 
guiding the allocation of the subsystems to the set of available 
machines in a distributed environment. The most interesting 
thing about this technique is that it does not stop when a certain 
predefined number of clusters are composed. Instead, it 
identifies the set of subsystems with the most communication 
density within each cluster and has less coupling among each 
other no matter how many clusters have been formed. 

The resultant system modules may not be ready for the 
mapping step. In fact, we may be faced by one of two cases. The 
first case happens when the number of candidate clusters are 
less than or equal to the number of the available machines in the 
target distributed architecture. In this case the mapping process 
can be simply achieved. The problem occurs in the second case, 
when the number of the generated clusters exceeds the number 
of available nodes. Actually, this is a more realistic view since 
there will always be huge software systems and limited 



 

iv 

hardware resources. So, in this case; we need an extra step to 
solve this mismatch problem in order to be ready for the 
upcoming mapping step. 

We proposed a solution by merging the generated system 
clusters into groups or larger grains such that the effect of class 
dependency and data communication is minimized. It was 
assumed that the target distributed system consists of a set of 
homogeneous processors that are fully connected via a 
communication network. We investigated a number of 
approaches that use the graph of clusters generated in the 
previous step and group it into a Merged Cluster Graph (MCG). 
Three different approaches were implemented and compared 
under different systems and architectures: The “K-Partitioning“ 
algorithm, the “Cluster Grouping” Approach, and the “Double-
k Clustering” Approach. Experimental results showed that the 
Double-K provides the best performance over the other 
algorithms since it gives the minimum interclass communication 
cost.  

The last step in the proposed restructuring approach is the 
physical mapping. Physical mapping is the process of efficient 
placement of the MCG into real processor network topologies. 
The general physical mapping problem was proven to be NP-
hard, thus allowing only for heuristic approaches. We have 
developed three algorithms for solving the mapping problem 
using a randomized approach. These algorithms have proved to 
be efficient, simple and easy to understand and implement. 
Furthermore, the performance of the proposed algorithms was 
tested against some existing deterministic techniques. The 
experimental results showed an outstanding performance of 
these algorithms in minimizing the overall mapping cost of the 
produced assignments. 



 

v 

 
Table of Contents 

 
List of figures      vii 
List of Tables      ix 
Chapter 1: Introduction     1 

1.1 Problem Statement     2 
1.2 Research Objectives    3 
1.3 Thesis Organization     4 

Chapter 2: Literature Survey    6 
2.1 Object-Oriented Paradigm    7 
2.2 Distributed Object-Oriented Systems  9 
2.3 Remote Object Invocation (ROI)   15 
2.4 Object Oriented Software Restructuring  20 
2.5 The DOOP Model     24 

2.5.1 Input queue:     26 
2.5.2 Execution Server:    26 
2.5.3 Execution-to-Communication Buffer 28 
2.5.4 Communication Model Description  29 
2.5.5 Output Queues     30 

Chapter 3: Clustering OO Systems   31 
3.1 Introduction      32 
3.2 Modeling Interclass Communication  34 
3.3 Spectral Graph Bi-partitioning Theory  37 

3.3.1 Preliminaries:     38 
3.3.2 Matrix formulation of the GBi-P problem: 38 
3.3.3 Spectral factorization    40 
3.3.4 The GraphBipart Algorithm:   44 

3.4 The Clustering Algorithm    46 
3.5 Case Study      53 
3.6 Chapter Summary     59 

Chapter 4: Clusters Grouping    61 
4.1 Introduction      62 



 

vi 

4.2 The Grouping Techniques    64 
4.2.1 The Direct Partitioning Approach:  65 
4.2.2 Cluster Grouping Approach:   66 
4.2.3 Double K Clustering Approach:  67 

4.3 A Case Study     69 
4.4 Experimental Results    73 

Chapter 5: Physical Mapping    78 
5.1 Introduction      79 
5.2 Problem Statement and Related Work  81 
5.3 Randomized Mappings    82 

5.3.1 The SimplyRMAP Algorithm  84 
5.3.2 The Most2CommBasedRMAP Algorithm: 86 
5.3.3 The BackboneBasedRMAP Algorithm 87 

5.4 Performance Evaluation    90 
5.5 Chapter Summary     92 

Chapter 6: Conclusions & Future Work   94 
6.1 Conclusions      95 
6.2 Future Work      98 

Bibliography      99 
 
 



 

vii 

 

List of figures 

 

Figure 2.1: The request/reply protocol for ROI   16 
Figure 2.2: Local versus Remote Object Invocation  16 
Figure 2.3: A hieratical view of the DOOP - an Analytical 

Model for  DOO systems    25 
Figure 3.1: The clustering step of the proposed restructuring 

approach       33 
Figure 3.2: A Graph representation for interclass 

communication      36 
Figure 3.3: Spectral Graph Bi-partitioning algorithm 45 
Figure 3.4: An algorithm to determine if a graph is a good 

partition of its  parent     48 
Figure 3.5: A recursive graph clustering algorithm 51 
Figure 3.6: A complete balanced binary tree showing the 

worst case of GraphCluster algorithm  52 
Figure 3.7: An example of a CDG of DOO system 53 
Figure 3.8: The corresponding adjacency matrix of the 

example CDG      54 
Figure 3.9: The corresponding normalized doubly stochastic 

matrix of the above adjacency matrix  54 
Figure 3.10: The generated CDG representation  57 
Figure 3.11: The first iteration of applying the clustering 

algorithm on the example CDG   58 
Figure 3.12: The final result of applying the clustering 

algorithm on the example CDG   59 
Figure 4.1: The grouping step for restructuring DOO 

software       64 
Figure 4.2 : the main steps of the Direct Partitioning 

approach       66 



 

viii 

Figure 4.3: The main steps of the Cluster Grouping  
approach       67 

Figure 4.4 : The main steps of the Double K Clustering 
approach       68 

Figure 4.5: The generated class graph representation for the 
example OO system     69 

Figure 4.6: Mapping the DOO system to a 4-node 
environment using the Direct Partitioning  
approach       70 

Figure 4.7: The system clusters generated by the recursive 
bi-partitioning algorithm    71 

Figure 4.8: Grouping the clusters of the example DOO 
system into 4 grains using the Cluster Grouping 
approach       71 

Figure 4.9: The result of the clustering step of applying the 
Double-K Clustering approach on the example DOO 
system       72 

Figure 4.10: The grouping step of applying the Double-K 
Clustering approach on the example DOO system 72 

Figure 4.11: Applying different restructuring approaches 
over 107 classes with 11 clusters   75 

Figure 4.12: Performance evaluation of the Cluster grouping 
approach versus K-Partitioning approach  76 

Figure 4.13: Performance evaluation of the Cluster grouping 
approach versus K-Partitioning approach  77 

Figure 5.1: A multi-step Approach for DOO Software 
Restructuring      80 

Figure 5.2: The details of the SimplyRMAP Algorithm 85 
Figure 5.3: The details of the Most2CommBasedRMAP 

Algorithm      87 
Figure 5.3: The details of the BackboneBasedRMAP 

Algorithm      89 
 



 

ix 

 

List of Tables 

 

Table 4.1: Interclass communication cost measured over 107 
classes after applying different restructuring Approaches 74 

Table 5.1: Performance Comparisons of Physical Mapping 
Techniques on Random processor Topology   91 

Table 5.2: Performance Comparisons of Physical Mapping 
Techniques on fixed Processor Topologies   91 

 
 



 

 

 

 

 

 

Introduction 

 

 

 

1.1 Problem Statement 

1.2 Research Objectives 

1.3 Thesis Organization 

  

 

 

1



 
Introduction Chapter 1

 

2 

 

 

CHAPTER 1 

Introduction 

 
1.1 Problem Statement  

Advanced scientific computing systems are often Distributed 
Object-Oriented (DOO) in nature. Pairing distributed systems 
with object oriented paradigms results in distributed objects. 
Choosing the most efficient distributed object design is a multi 
criteria decision process. Object-oriented paradigm [Mey88, 
Ost02] is based on several concepts such as encapsulation, 
inheritance, polymorphism, and dynamic binding. Although 
these features contribute to the reusability and extensibility of 
systems, they produce complex dependencies between classes. 
This makes investigating and evaluating the performance of the 
DOO applications a challenging task. Required techniques 
should capture the behavior of the system while preserving the 
OO properties. Furthermore, in many cases the initial OO 
Software design doesn’t have the best class distribution and may 
need to be restructured.  

Software restructuring is the process of re-organizing the 
logical structure of existing software systems in order to 
improve particular quality attributes of software products 
[Arn89]. Commercial software systems are generally far too 
large and complex to be effectively restructured on an ad hoc 



 
Introduction Chapter 1

 

3 

basis. No doubt, we need techniques and tools to help analysts 
extract design and structure information and hence support 
software restructuring process. In this research, we developed a 
multi-step approach for restructuring DOO applications to fully 
utilize system resources and hence improve the overall system 
performance. 
 

1.2 Research Objectives 
Restructuring is a mechanism that aims to improve the 

system performance and choose the appropriate structure that fit 
with the user and the system requirements. In this research, we 
attempt to find an approach for efficiently restructuring the 
DOO software classes in order to be mapped onto a certain 
target distributed architecture. We can summarize the objectives 
of this research work as follows:  

 
1. Study of the state of art in performance modeling of 

distributed object oriented software system. 
 
2. Utilizing this modeling approach as a base for driving the 

application time cost. 
 
3. Developing restructuring algorithms while considering 

architectures with different topologies, system constraints and 
operating conditions 



 
Introduction Chapter 1

 

4 

1.3 Thesis Organization 
This thesis consists of four main parts. Each one of them 

illustrates one step or phase of the restructuring approach. It 
starts from the DOOP model and how to use it to evaluate the 
communication activity between different classes in the DOO 
system. Then it moves to the clustering step and go through the 
different techniques that can be used to group the generated 
clusters into larger grains and finally how to find the efficient 
way to map those grains to the physical architecture of the 
distributed environment. In general, the rest of this thesis is 
organized as follows: 

Chapter 2, Literature Survey: this chapter provides an 
overview of the distributed object oriented systems and its 
applications. It also defines the principles of object oriented 
restructuring, as well as some of its related practical 
considerations. 

Chapter 3, Clustering OO Systems: In this chapter, we 
present an approach for decomposing object-oriented systems 
into subsystems that have low coupling and are suitable for 
distribution. The developed technique is based on the recursive 
spectral bi-partitioning. The steps of this algorithm are 
illustrated and analyzed through a simulated case study  

Chapter 4, Unrestricted Clusters Mapping: this chapter 
introduces a number of methods to solve the mismatch between 
the hardware and the DOO software components or clusters. We 
investigated three techniques for merging heavily related 
clusters into larger grains and mapping them to fully connected 
nodes such that the dependency communication among classes 
is minimized.  

Chapter 5, Physical Mapping: this is the final part of the 
research. It defines the main idea of physical mapping as well as 
the notations and criteria used in finding a solution. In addition, 



 
Introduction Chapter 1

 

5 

we develop three algorithms to solve the physical mapping 
problem. Each one of them applies the idea of randomized 
algorithms on the physical mapping from a different point of 
view. Next, the performance of these algorithms is compared to 
a couple of other mapping techniques under different 
topologies.  

Chapter 6, Conclusions and Future Work: this part 
summarizes the total findings of the conducted research and 
gives hints that can lead other researchers in their future work.  

 


