

Role of Omega 3 Fatty Acids Against Ehrlich Ascites Carcinoma-Induced Hepatic and Brain Dysfunctions in Gamma Irradiated Mice

A Thesis Submitted in Partial Fulfillment of the Requirements for the Master Degree of Science in Biochemistry

Ву

Mustafa Mohamed Mustafa El-Gharib B.Sc. Biochemistry (2009)

Faculty of Science Biochemistry Department 2014

Role of Omega 3 Fatty Acids Against Ehrlich Ascites Carcinoma-Induced Hepatic and Brain Dysfunctions in Gamma Irradiated Mice

A Thesis

Submitted in Partial Fulfillment of the Requirements for the Master Degree of Science in Biochemistry

Ву

Mustafa Mohamed Mustafa El-Gharib B.Sc. Biochemistry (2009)

Under Supervision of

Prof. Dr. Amina M. Medhat

Professor of Biochemistry Faculty of Science Ain Shams University

Prof. Dr. Ussama Z. Said

Professor of Physiological Chemistry National Center for Radiation Research and Technology Atomic Energy Authority

Prof. Dr. Neamat H. Ahmed

Professor of Cell Biology and Histology National Center for Radiation Research and Technology Atomic Energy Authority

> Faculty of Science Biochemistry Department 2014

I declare that this thesis has been composed by myself and that the work which is recorded herein after has been done by myself. It has not been submitted for a degree at this or any other university.

Mustafa Gharib

ACKNOWLEDGMENTS

I am greatly honored to express my deep gratitude to **Prof. Dr.** *Amina M. Medhat*, Professor of Biochemistry, Faculty of Science, Ain Shams University, Egypt, for her kind supervision, moral support, instructive guidance and kind advice throughout this work.

I am sincerely grateful to **Prof. Dr.** *Ussama Z. Said*, Professor of physiological chemistry, Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Egypt, for suggesting the plane of the work and providing all the facilities for the accomplishment of this work as well as his continuous valuable guidance and helpful discussion throughout all stages of the study and also for handwriting of this manuscript.

Grateful thanks are expressed to **Prof. Dr.** *Neamat H. Ahmed*, Professor of cell biology and histology, National Centre for Radiation Research and Technology, Atomic Energy Authority, Egypt, for her unlimited efforts, for giving me the opportunity to perform this work under excellent working atmosphere, her encouragement, patience and interest that she showed in my work during the study period.

Acknowledgments

I am grateful to all my colleagues at Radiation Biology Department, NCRRT, especially my colleagues at the units of Physiological Chemistry and Cell Biology, for providing a good working environment, working assistance whenever necessary, and for sharing their scientific knowledge.

CONTENTS

Page

Abstract	
List of Abbreviations	Ι
List of Figures	III
List of Tables	VII
Introduction	1
Aim of the work	7

1. Review of Literature

10 15 15
15 15
15
19
25
26
27
29
31
36
37
43
45
46
47
48
49
51
52
52
53
53
57
60
64

Contents

2.	Materials and Methods	
2.1.	Materials	
2.1.1.	Experimental Animals	65
2.1.2.	Radiation Facility	65
2.1.3.	Tumor Transplantation	66
2.1.4.	Omega 3 Fatty Acids Treatment	66
2.1.5.	Experimental Design	67
2.1.6.	Biological Samples Preparation	69
2.2.	Methods	
2.2.1.	Measurement of Tumor Size	70
2.2.2.	Assessment of systemic inflammation	70
2.2.2.1.	Determination of Serum Tumor Necrosis Factor-	
	Alpha Level	70
2.2.2.2.	Determination of Serum C-Reactive Protein Level	75
2.2.2.3.	Determination of Total Leukocytic Count	77
2.2.3.	Assessment of oxidative stress and antioxidant	
	enzymes activities	78
2.2.3.1.	Determination of Lipid Peroxidation Level	78
2.2.3.2.	Determination of Reduced Glutathione Content	80
2.2.3.3.	Determination of Glutathione Peroxidase Activity	82
2.2.3.4.	Determination of Catalase Activity	85
2.2.3.5.	Determination of Superoxide Dismutase Activity	88
2.2.4.	Assessment of metabolic alterations in liver tissue	90
2.2.4.1.	Determination of Serum Alanine Aminotransferase	
	Activities	90
2.2.4.2.	Determination of Serum Aspartate	
	Aminotransferase Activity	92
2.2.4.3.	Determination of Serum Alkaline Phosphatase	
	Activity	94
2.2.4.4.	Determination of Serum Lactate Dehydrogenase	
	Activity	96
2.2.5.	Assessment of metabolic alterations in brain tissue	98
2.2.5.1.	Determination of Brain Dopamine, Epinephrine	
	and Norepinephrine Levels	98
2.2.5.2.	Determination of Brain Serotonin Level	101
2.2.6.	Histopathological Examination	104
2.3.	Statistical analysis	104

3.	Results	
3.1.	Ehrlich Carcinoma (EC) tissue	107
3.1.1.	Monitoring of Ehrlich Tumor size	107
3.1.2.	Inflammatory Responses	110
3.1.2.1.	Total Leukocytic Count	110
3.1.2.2.	Serum Tumor Necrosis Factor-Alpha Levels	111
3.1.2.3.	Serum C - reactive protein Levels	112
3.1.3.	Tumor TBARS levels and Antioxidant Status	117
3.1.4.	Histopathological Examination of EC Tissue	122
3.2.	Liver tissue	124
3.2.1.	Liver Function Tests	124
3.2.2.	Liver TBARS Levels and Antioxidant status	128
3.2.3.	Histopathological Examination of Liver Tissue	132
3.3.	Brain tissue	138
3.3.1.	Brain Monoamines Levels	138
3.3.2.	Brain TBARS Levels and Antioxidant Status	142
3.3.3.	Histopathological Examination of Brain Tissue	146

ł

4.	Discussion	153
5.	Summary and Conclusion	189
6.	Recommendations	193
7.	References	195
8.	Arabic Summary	
9.	Arabic Abstract	

LIST OF ABBREVIATIONS

AA	Arachidonic Acid
AGEs	Advanced Glycation End Products
ALA	α-Linolenic Acid
ALP	Alkaline Phosphatase
ALT	Alanine Aminotransferase
AST	Aspartate Aminotransferase
ATI	After Tumor Inoculation
ATP	Adenosine Triphosphate
CAT	Catalase
СК	Creatine Kinase
COX	Cyclooxygenase
CRP	C-Reactive Protein
DA	Dopamine
DHA	Docosahexaenoic Acid
DNA	Deoxyribonucleic Acid
EAC	Ehrlich Ascites Carcinoma
EC	Ehrlich Carcinoma
EDTA	Ethylene Diamine Tetra Acetic Acid
EP	Epinephrine
EPA	Eicosapentaenoic Acid
FADH ₂	Reduced Flavin Adenine Dinucleotide
FAs	Fatty Acids
GSH-Px	Glutathione Peroxidase
GSH	Reduced Glutathione
GSSG	Oxidized Glutathione
Gy	Gray