Investigation of Ferroresonance Phenomena in Electric Power Systems

A Thesis
Submitted for the Requirement of the Degree of
MASTER OF SCIENCE
In Electrical Power and Machines Engineering
By
Eng. Mahmoud Mohamed Hassanin Ibrahim
B.Sc. in Electrical Power and Machines Engineering, Ain Shams University, 2009

Supervision Committee:
Prof. Dr. Mohamed Abdel-Latif Badr
Dr. Mohamed Abdel Aziz Hassan Abdel Rahman
Dr. Mohamed Ezzat Abdel Rahman

Faculty of Engineering
Ain Shams University
2015
Examiners Committee

Name, Title and affiliation Signature

Prof. Dr. Fahmy Metwaly Ahmed Bendary
Professor at Faculty of Engineering,
Banha University – Shoubra

Prof. Dr. Mohamed Abdel-Latif Badr
Professor at Electrical Power and Machines Engineering
Dept., Faculty of Engineering,
Ain Shams University

Prof. Dr. Adel Youssef Hannallah
Professor at Electrical Power and Machines Engineering
Dept., Faculty of Engineering,
Ain Shams University
Statement

This thesis is submitted to Ain Shams University in partial fulfillment of the requirements for the degree of Master of Science in Electrical Power and Machines Engineering.

The work included in this thesis was carried out by the author in the department of Electrical Power and Machines Engineering, Ain Shams University.

No part of this thesis has been submitted for a degree or a qualification at any other university or institution.

Name: Mahmoud Mohamed Hassanin Ibrahim

Signature:

Date:
Acknowledgment

Writing a thesis, as with any other large project, requires the coordinated efforts of many people. First of all; it is my duty to kneel and praise in true gratitude to ALLAH AL-RAHMAN, whose guidance and aid have given me the power to accomplish this study.

I would like to express my obligated gratitude to my supervisor Prof. Dr. Mohamed Abdel-Latif Badr for his outstanding support, contribution and invaluable assistance in the achievement and development of my thesis, his wise experience in the field of electrical power engineering has enlightened me throughout the study.

I would like to express my gratitude to my supervisor Dr. Mohamed Abdel-Aziz Hassan Abdel Rahman for his outstanding support, continuous follow up, contribution and invaluable assistance in the achievement and development of my thesis.

I would like to express my gratitude to my supervisor Dr. Mohamed Ezzat Abdel-Rahman for his outstanding support, contribution and invaluable assistance in the achievement and development of my thesis. I would like to thank them for their assistance in providing technical support.

Last but not least, my special thanks to my parents, brother and sisters for their encouragement. All involved gave me confidence and unending support.

Eng. Mahmoud Mohamed Hassanin Ibrahim
2015
Abstract

Ferroresonance is one of the most destructive and longest known power quality disturbances in the history of AC power systems. Such phenomena occur in a power system during transient conditions, Transmission line faults and unsymmetrical switching events on some lines in the presence of lightly loaded transformers. The phenomenon of a ferroresonance is a name given to a situation where the nonlinear magnetic properties of iron in transformer interact with the capacitance existing in the electrical network.

Many cases of ferroresonance have been reported in power systems over the years. In recent years the number of ferroresonance incidents have increased due to network complexity and improved equipment efficiency (low losses systems). The main feature of this phenomenon is that more than one stable steady state response is possible for the same set of the network parameters. The response is highly dependent on the initial operating conditions, loads and the circuit parameters. Ferroresonance has endured many decades of intense research due to its highly mysterious nonlinear behavior, challenges in prediction and ongoing need for mitigating the dangerous oscillations still exist. The occurrence of ferroresonance is usually marked with large overvoltages and overcurrents with highly distorted waveforms which can cause irreparable damage to power system components.

In this study, the ferroresonance phenomenon is investigated both analytically and experimentally. This study considers a single phase transformer connected in series with capacitor and fed from variable voltage AC power supply at a system
frequency of 50 Hz and 100 Hz. The study verified the effect of supply voltage, capacitance value and system frequency on the onset of ferroresonance phenomena. Also, the influence of resistance on the ferroresonance phenomena is investigated by connecting two values of resistances individually; small resistance of 3 Ω and large resistance of 15 Ω in series with the capacitor and the low tension side of the transformer. The study discusses the ferroresonance phenomena and its consequences on apparatus. It also shows the ferroresonance circuit and the conditions when the operating point moves from the 1st quadrant to the 3rd quadrant of the saturation curve plot where the phenomenon occurs. The experimental work has required the determination of the transformer under study parameters. The No load test, Short circuit test referred to H.V. Side and resistance measurement test were performed.
List of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgment</td>
<td>I</td>
</tr>
<tr>
<td>Abstract</td>
<td>II</td>
</tr>
<tr>
<td>List of Contents</td>
<td>IV</td>
</tr>
<tr>
<td>List of Figures</td>
<td>VII</td>
</tr>
<tr>
<td>List of Tables</td>
<td>X</td>
</tr>
<tr>
<td>List of Symbols</td>
<td>XI</td>
</tr>
<tr>
<td>CHAPTER ONE INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 General</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1 Series Ferroresonance in Potential Transformers (PTs)</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Motivation and Objectives</td>
<td>3</td>
</tr>
<tr>
<td>1.2.1 Motivation</td>
<td>3</td>
</tr>
<tr>
<td>1.2.2 Objectives</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Thesis Outlines</td>
<td>5</td>
</tr>
<tr>
<td>CHAPTER TWO LITERATURE SURVEY</td>
<td></td>
</tr>
<tr>
<td>2.1 Historical Background of Ferroresonance</td>
<td>8</td>
</tr>
<tr>
<td>2.2 Linear Resonance versus Ferroresonance Phenomena</td>
<td>8</td>
</tr>
<tr>
<td>2.2.1 Linear Resonance</td>
<td>8</td>
</tr>
<tr>
<td>2.2.2 Ferroresonance Phenomena</td>
<td>11</td>
</tr>
<tr>
<td>2.2.3 Effect of Magnetic Hysteresis on Ferroresonance Phenomena</td>
<td>14</td>
</tr>
<tr>
<td>2.2.4 Analytical Model Equations</td>
<td>15</td>
</tr>
<tr>
<td>2.3 Literature Survey</td>
<td>17</td>
</tr>
<tr>
<td>2.3.1 Basic References</td>
<td>17</td>
</tr>
<tr>
<td>2.3.2 Influence of Resistance on Ferroresonance Phenomena</td>
<td>20</td>
</tr>
<tr>
<td>2.3.3 Effect of Magnetic Hysteresis</td>
<td>20</td>
</tr>
<tr>
<td>2.3.4 Mitigation of Ferroresonance Phenomena</td>
<td>24</td>
</tr>
<tr>
<td>2.3.5 IEEE Working Group Studies</td>
<td>26</td>
</tr>
<tr>
<td>2.3.6 Predictive Studies for Ferroresonance Phenomena</td>
<td>27</td>
</tr>
</tbody>
</table>
Chapter Three Experimental Investigation

3.1 Introduction ... 29
3.2 Experimental Determination of Transformer Parameters 29
 3.2.1 No Load Test (Open Circuit Test) ... 30
 3.2.2 Resistance Measurement Test ... 33
 3.2.3 Short Circuit Test (Referred to H.V. Side) .. 35
3.3 Experimental Investigation of the Ferroresonance Phenomena 36
 3.3.1 Effect of Changing Supply Voltage on Ferroresonance Phenomena 36
 3.3.1.1 Experimental Gradual Increase in the Supply Voltage 37
 3.3.1.2 Recording the Current Waveform during Ferroresonance Phenomena .. 41
 3.3.1.3 Changing the Supply Voltage Gradually at (C = 350 \mu farad) 44
3.3.2 Effect of Changing Capacitance Value at Constant Supply Voltage ... 46
3.3.3 Effect of Frequency ... 46
 3.3.3.1 Increasing the Supply Voltage Gradually ... 46
 3.3.3.2 Effect of Changing Capacitance at a System Frequency of 100Hz 50

Chapter Four Analytical Study

4.1 Introduction ... 51
4.2 Analytical Study for the Ferroresonance Phenomena 51
 4.2.1 Effect of Changing Supply Voltage .. 51
 4.2.1.1 Changing the Supply Voltage at C = 135 \mu farad 52
 4.2.1.2 Changing the Supply Voltage at C = 275 \mu farad 55
 4.2.1.3 Changing the Supply Voltage at C = 350 \mu farad 57
4.2.2 Effect of Changing Capacitance value at Constant Supply Voltage ... 60
4.2.3 Effect of Changing Frequency ... 62
4.2.3.1 Changing the Supply Voltage at \(C = 70 \, \mu\text{farad}, \, F = 100 \, \text{Hz} \) ... 62
4.2.3.2 Effect of Changing Capacitance with Constant Supply Voltage .. 63

CHAPTER FIVE INFLUENCE OF RESISTANCE ON FERRORESONANCE PHENOMENA
5.1 Introduction ... 65
5.2 Influence of Small Resistance ... 68
5.3 Influence of Large Resistance ... 71

CHAPTER SIX CONCLUSIONS, RECOMMENDATIONS AND FUTURE WORK
6.1 Conclusions .. 75
6.2 Recommendations ... 76
6.3 Suggestions for Future Work ... 77

REFERENCES
APPENDICES
Appendix A .. 84
Appendix B .. 86
Appendix C .. 88
Appendix D .. 90
PUBLICATIONS

List of Figures

CHAPTER TWO LITERATURE SURVEY

Figure 2.1 Linear Resonance Circuit 9
Figure 2.2 Characteristic of V_C, V_L, I and E_S at Resonance 10
Figure 2.3 Linear Resonance - Phasor Diagram Representation 11
Figure 2.4 Ferroresonant Circuit 12
Figure 2.5 E-I Characteristic of Ferroresonance Circuit 13
Figure 2.6 Equivalent Model of a Single Phase Transformer for Ferroresonance Studies – with the Effect of Magnetic Hysteresis 14
Figure 2.7 Ferroresonance Circuit 16
Figure 2.8 Transfer of Operating Point from the 1st Quadrant to 3rd Quadrant 16
Figure 2.9 Typical VT Connection in 50 KV Norwegian Sub-transmission System 19
Figure 2.10 Comparison between the VT Peak Voltages obtained from Various Models 23

CHAPTER THREE EXPERIMENTAL INVESTIGATION

Figure 3.1 No Load Test Circuit Diagram 30
Figure 3.2 Experimental No Load Test Circuit Diagram 31
Figure 3.3 No Load Curve at 50 Hz 31
Figure 3.4 No Load Curve at 100 Hz 33
Figure 3.5 Resistance measurement L.V. side 110 V – R_1 34
Figure 3.6 Resistance Measurement H.V. Side 220 V – R_2 34
Figure 3.7 Short Circuit Test Referred to High Voltage Side 35
Figure 3.8 Circuit for Ferroresonance Testing – Neglecting the Resistance 37
Figure 3.9 Experimental Test for Varying the Supply Voltage 38
Figure 3.10 V_t, V_c and I against the Supply Voltage E_s 40
Figure 3.11 Experimental Test for Varying the Supply Voltage While Recording the Current Waveform Using Oscilloscope 42
Figure 3.12 V_t, V_c and I against the Supply Voltage E_s 43
Figure 3.13 Current Waveform during Ferroresonance Phenomena 44
Figure 3.14 Experimental Test for Varying the Supply Voltage 45