

شبكة المعلومات الجامعية







شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم



شبكة المعلومات الجامعية

## جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

### قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد أعدت دون أية تغيرات



يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار %٤٠-٦٠ مئوية ورطوبة نسبية من ٢٠-٠٤% قي درجة حرارة من ٢٥-١٥ مئوية ورطوبة نسبية من ٢٥-١٥ To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%



بعض الوثائق

الإصلية تالفة

desolali alegiali asia (a) ASUNET



بالرسالة صفحات لم

ترد بالإصل

# MICRO-COMPUTER BASED ENHANCED FUZZY CONTROLLER APPLIED TO A RENEWABLE ENERGY SYSTEM

BY

Fawzan Mohamed Salem
M.Sc. Electrical Power & Machines Engineering

A Thesis Submitted to the Faculty of Engineering - Cairo University

in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY

in

#### ELECTRICAL POWER AND MACHINES ENGINEERING

Under the Supervision of

**Prof. Dr. Hassan Taher Dorrah**Electrical Power and Machines Department
Faculty of Engineering - Cairo University

Prof. Dr. Mohamed Said Abdel Moteleb Power Electronics Department Electronics Research Institute

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2006

0/04



# MICRO-COMPUTER BASED ENHANCED FUZZY CONTROLLER APPLIED TO A RENEWABLE ENERGY SYSTEM

BY

Fawzan Mohamed Salem
M.Sc. Electrical Power & Machines Engineering

A Thesis Submitted to the Faculty of Engineering - Cairo University

in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY

in

### ELECTRICAL POWER AND MACHINES ENGINEERING (AUTOMATIC CONTROL)

Approved by the Examining Committee

H. T. Doneh

Prof. Dr. Hassan Taher Dorrah,

Advisor

Prof. Dr. Mohamed Said Abdel Moteleb,

Advisor

M-Seed O. Mals

Prof. Dr. Said Abdel Monem Wahsh, Electronics Research Institute Member

Sound Wal

Prof. Dr. Abdel Monem Abdel Hamid Seif, Faculty of Engineering-Cairo University

Member

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT



#### TABLE OF CONTENTS

|                                                            | Page  |
|------------------------------------------------------------|-------|
| LIST OF TABLES                                             | vii   |
| LIST OF FIGURES                                            | viii  |
| LIST OF SYMBOLS AND ABBREVIATIONS                          | xiii  |
| ACKNOWLEDGMENT                                             | xvii  |
| ABSTRACT                                                   | xviii |
| CHAPTER (1): SYSTEMATIC STUDY OF FUZZY-PID                 |       |
| CONTROLLERS - INTRODUCTION AND LITERATURE REVIEW           |       |
| 1.1 Introduction                                           | 1     |
| 1.2 Principles of Fuzzy Logic Controllers                  | 1     |
| 1.2.1 Fuzzificztion Process                                | 3     |
| 1.2.2 Knowledge Base                                       | 3     |
| 1.2.2.1 Rule Base                                          | 3     |
| 1.2.2.2 Data Base                                          | 5     |
| 1.2.3 Fuzzy Inference Engine                               | 7     |
| 1.2.4 Defuzzification Process                              | 7     |
| 1.3 Designing Parameters and Tuning Strategies             | 8     |
| 1.4 Fuzzy-PID Controllers Categories                       | 10    |
| 1.5 Direct Action Fuzzy-PID Controllers Structures         | 12    |
| 1.5.1 One-Input Fuzzy-PID Structure with Three Rule-Bases  | 12    |
| 1.5.2 One-Input Fuzzy-PID Structure with Single Rule-Base  | 13    |
| 1.5.3 Two-Input Fuzzy-PID Structure with Decoupled Rules   | 13    |
| 1.5.4 Two-Input Fuzzy-PID Structure with Coupled Rules     | 14    |
| 1.5.5 Three-Input Fuzzy-PID Structure with Decoupled Rules | 15    |
| 1.5.6 Three-Input Fuzzy-PID Structure with Coupled Rules   | 15    |
| 1.5 Literature Review                                      | 16    |
| 1.6 Aim of the Work                                        | 25    |
| 1.7 Thesis Layout                                          | 25    |

|                                                                                                | Page       |
|------------------------------------------------------------------------------------------------|------------|
| CHAPTER (2): THE PROPOSED ENHANCED FUZZY-PI                                                    |            |
| CONTROLLER                                                                                     |            |
| 2.1 Introduction                                                                               | <b>2</b> 6 |
| 2.2 Structure of the Enhanced Fuzzy-PI Controller (EFPIC)                                      | 27         |
| 2.2.1 Normalization                                                                            | 28         |
| 2.2.2 Fuzzification and Fuzzy Rules                                                            | 28         |
| 2.2.3 Inference Engine and Defuzzification                                                     | <b>2</b> 9 |
| 2.2.4 PI-Controller Gains                                                                      | 34         |
| 2.2.5 Denormalization                                                                          | 34         |
| 2.3 Some Properties of the Normalized Fuzzy Action                                             | 35         |
| 2.4 Tuning Procedure for Controller Parameters Adjustment                                      | 42         |
| 2.5 Summary                                                                                    | 45         |
| CHAPTER (3): SIMULATIONS AND NUMERICAL VERIFICATIONS                                           |            |
| 3.1 Introduction                                                                               | 46         |
| 3.2 EFPIC's Closed Loop Structure Using Matlab                                                 | 46         |
| 3.3 Numerical Examples                                                                         | 50         |
| 3.3.1 Second-order process with dead time                                                      | 51         |
| 3.3.2 System with nonlinearity                                                                 | 54         |
| 3.4 Applying the EFPIC to Maximum Power Point Tracking (MPPT) Problem of a Photovoltaic Module | 56         |
| 3.4.1 Why Maximum Power Point Tracking (MPPT) Problem?                                         | 56         |
| 3.4.2 Solar Cell Modeling and Electrical Characteristics                                       | 56         |
| 3.4.3 Maximum Power Point Tracking (MPPT) Problem                                              | 61         |
| 3.4.4 Types of DC-DC Converters and Modeling of the Step-Down DC-DC Converter                  | 63         |
| 3.4.5 Simulation Results with Subjective Evaluation                                            | 66         |
| A- Fast changes in radiation levels                                                            | 70         |
| B- Repetitive changes in solar cells temperature                                               | 73         |
| C- Several load variations                                                                     | 76         |
| D- Incorporating all above conditions                                                          | 79         |
|                                                                                                |            |

| CHAPTER (4): HARDWARE IMPLEMENTATION AND EXPERIMENTAL RESULTS                    | Page |
|----------------------------------------------------------------------------------|------|
| 4.1 Introduction                                                                 | 83   |
| 4.2 The PV Modules                                                               | 86   |
| 4.3 Signal Measuring and Conditioning                                            | 87   |
| 4.3.1 The Voltage Transducer of the Working PV Module                            | 87   |
| 4.3.2 The Current Transducer of the Working PV Module                            | 87   |
| 4.3.3 The Voltage Transducer and the Current Transducer of the Testing PV Module | 89   |
| 4.4 Testing PV Module Circuits                                                   | 90   |
| 4.5 Maximum Power Tracking Circuits                                              | 94   |
| 4.5.1 PWM Generating Circuit                                                     | 94   |
| 4.5.2 Driving and Isolation Circuit                                              | 96   |
| 4.5.3 The Step-Down DC-DC Converter                                              | 97   |
| 4.6 PC with Data Acquisitions                                                    | 99   |
| 4.7 The Control Algorithm                                                        | 100  |
| 4-8 The DC Load                                                                  | 102  |
| 4.9 Testing the EFPIC Performance                                                | 103  |
| 4.9.1 Results Obtained During a Clear Day                                        | 103  |
| 4.9.2 Results Obtained During a clear Day with Little Sudden Changes             | 107  |
| 4.9.3 Results Obtained During a Cloudy Day                                       | 111  |
| 4-10 Summary                                                                     | 115  |
| CHAPTER (5): CONCLUSIONS AND FUTURE WORK                                         |      |
| 5.1 Conclusions                                                                  | 116  |
| 5.2 Recommendations                                                              | 117  |
| REFERENCES                                                                       | 118  |
| APPENDICES                                                                       | 123  |
| Appendix A                                                                       | 123  |
| Appendix B:                                                                      | 124  |
| Appendix C:                                                                      | 125  |
| Appendix D:                                                                      | 126  |
| Appendix E:                                                                      | 127  |
| Appendix F:                                                                      | 128  |
| List of Publications                                                             | 141  |

#### LIST OF TABLES

|           | •                                                                                                       | rage |
|-----------|---------------------------------------------------------------------------------------------------------|------|
| Table 1.1 | Linguistic variables abbreviations                                                                      | 4    |
| Table 1.2 | Linguistic rules of FLC                                                                                 | 4    |
| Table 1.3 | Designing parameters of fuzzy controllers                                                               | 8    |
| Table 1.4 | Comparison between some fuzzy-PID controllers in the                                                    | 24   |
| Table 3.1 | literature  A comparison between the structures of the STFPIC and the proposed EFPIC                    | 51   |
| Table 3.2 | A comparison between results obtained for process (3.1)                                                 | 52   |
| Table 3.3 | A comparison between results obtained for process (3.2)                                                 | 54   |
| Table 3.4 | Performance comparison between the EFPIC and the PI-controller                                          | 67   |
| Table 3.5 | Performance comparison between the EFPIC and the PIC for fast changes in radiation levels               | 71   |
| Table 3.6 | Performance comparison between the EFPIC and the PIC for repetitive changes in solar cells temperature  | 73   |
| Table 3.7 | Performance comparison between the EFPIC and the PIC for several load variations                        | .76  |
| Table 3.8 | Performance comparison between the EFPIC and the PIC for variations in radiation, temperature, and load | 79   |