HAIR AND URINE COTININE AS BIOMARKERS FOR PASSIVE SMOKING IN ACUTE BRONCHIOLITIS AND THEIR CORRELATION TO CLINICAL SEVERITY SCORE

Thesis

Submitted for Partial Fulfillment of Master Degree in Pediatrics

By Nancy Awad Mohamed Awad

M.B., B.CH. (2006)

Under supervision of

Prof. Dr/ Mona Mustafa Elganzory

Professor of Pediatrics Faculty of medicine, Ain Shams University

Prof. Dr/ Manal Mohamed Abd Al-Aziz

Professor of Clinical Pathology Faculty of medicine, Ain Shams University

Doctor/ Terez Boshra Kamel

Iecturer of Pediatrics Faculty of medicine, Ain Shams University

Faculty of Medicine - Ain Shams University 2012

بسم (قة الرحمن الرحيم وَأَنْزَلَ اللهُ عَلَبْكَ اللناب والجلمة وَعَلَّمَكَ مَا لَمْ نَلْنْ نَعْلَمُ وَكَانَ فَضْلُ اللهِ عَلَبُكَ عظيمًا صرق (لله العظيم سورة (لنساء آية (١١٢)

Every child has the right to grow up in a 'smoke free environment.

Acknowledgement

First and Foremost thanks are to ALLAH, The compassionate and merciful, whose help is the main factor in accomplishing this work.

It is my pleasure to express my deepest thanks and gratitude to **Prof. Dr. Mona Mustafa Elganzory**, professor of Pediatrics, Ain Sams University for her great help and support, kind supervision and continuous encouragement. I am truly grateful for her.

I would like also to express my profound thanks and gratitude to *Dr. Terez Boshra Kamel*, Jecturer of Pediatrics, Ain Shams University for her constructive guidance, remarkable effort, and scientific assistance and whatever have been said, is little to express my respect and thanks to her.

I am truly indebted to *Dr. Manal Mohamed Abd Al-Aziz*, professor of Clinical Pathology, Ain Shams University for her meticulous supervision, encouragement, unlimited assistance and guidance during this work.

Last but not least, I would like to express my deep thanks and gratitude to all my dear *Patients* hoping them a good health.

Nancy Awad Mohammed Awad

List of Contents

	Title	Page No.
•	Introduction	1
•	Aim of the Work	
•	Review of Literature	
	o Acute Bronchiolitis	4
	 Tobacco Smoking 	
•	Patients and Methods	
•	Results	
•	Discussion	
•	Summary	
•	Conclusion	
•	Recommendations	
•	References	

Arabic Summary

List of Tables

Table No.	Title Page No.
Table (1):	Differential Diagnosis for a Wheezing Infant
Table (2):	Summary of recent evidence for therapies used for bronchiolitis
Table (3):	Gas phase components generated by the burning of tobacco
Table (4):	Particulate phase components generated by burning of tobacco
Table (5):	Selected constituents of cigarette smoke: Ratio of constituents in SS smoke to MS smoke
Table (6):	Other constituents in cigarette smoke &their health effects
Table (7):	Modified RDAI score95
Table (8):	Demographic data of group I100
Table (9):	Clinical data of group I101
Table (10):	Clinical criteria (Items of RDAI) of group I101
Table (11):	Demographic data of group II102
Table (12):	Clinical data of group II102
Table (13):	Clinical criteria (Items of RDAI) of group II
Table (14):	Comparison between group I and group II according to crowding index and RD score and clinical criteria (Items of RDAI)
Table (15):	Comparison between group I and group II according to laboratory investigations

Table No.	Title Pa	ge No.
Table (16):	Comparison between hair and urine cotinine in group I and group II according to gender	107
Table (17):	The relation between urine cotinine and total wheezing score, total retractions, total score of RDAI and hair cotinine and lymphocytic count in group I	
Table (18):	The relation between parental smoking index and total retractions score, total score of RDAI and urine cotinine, lymphocytic count and total leukocytic count in group I	
Table (19):	The relation between hair cotinine and total wheezing, total retractions score and total score of RDAI in group I	
Table (20):	The relation between total retractions score and lymphocytic count and total leukocytic count in group I	110

List of Boxes

Вох По.	Title	Page No.
Box (1):	Characteristics of RSV	
Box (2):	"Mock" cigarette label	

List of Figures

Fig. No.	Title Page	No.
Fig. (1):	The anatomy of respiratory tract	5
Fig. (2):	Interaction of microbial derived molecules with host's cells leading to the production of cytokines, a prerequisite for innate immunity	8
Fig. (3):	Antibacterial defences	9
Fig. (4):	Difference between healthy and inflamed bronchiole	11
Fig. (5):	RSV age distribution (in months) for children with bronchiolitis	12
Fig. (6):	Diagram of a cigarette	48
Fig. (7):	Diagram of a filtered cigarette	49
Fig. (8):	Air Flux during smoking	57
Fig. (9):	Household smoking and cot death	73
Fig. (10):	Effect of stopping smoking during pregnancy on the risk of low birth-weight	74
Fig. (11):	Smoking in pregnancy and relative risk of perinatal death	75
Fig. (12):	Three forms of nicotine	86
Fig. (13):	Quantitative scheme of nicotine metabolism. Circled compounds indicate excretion in urine and associated numbers indicate percent of systemic dose of nicotine	88
Fig. (14):	Comparison between group I and group II according to total wheezing score	105
Fig. (15):	Comparison between group I and group II according to total retractions score	106

List of Figures (Cont...)

Fig. No.	Title Pag	je No.
Fig. (16):	Comparison between group I and group II according to total score of RDAI.	
Fig. (17):	The relation between parental smoking index and total score of RDAI in cases with history of passive tobacco smoking	L
Fig. (18):	The relation between urine cotinine and total score of RDAI in cases with history of passive tobacco smoking	2
Fig. (19):	The relation between hair cotinine and total score of RDAI in cases with history of passive tobacco smoking	2
Fig. (20):	The relation between parental smoking index and urine cotinine in cases with history of passive tobacco smoking	L
Fig. (21):	The relation between urine cotinine and lymphocytic count in cases with history of passive tobacco smoking	2
Fig. (22):	The relation between hair cotinine and urine cotinine in cases with history of passive tobacco smoking.	•
Fig. (23):	The relation between parental smoking index and lymphocytic count in cases with history of passive tobacco smoking	L
Fig. (24):	The relation between parental smoking index and total leukocytic count in cases with history of passive tobacco smoking	•
Fig. (25):	Receiver Operating Characteristic (ROC) curve to define the best cut-off to urine cotinine and hair cotinine to detect passive smoking.	
	<u>-</u>	

List of Abbreviations

ALI	Acute lung injury.
AOM	Acute otitis media.
ARDS	Acute respiratory distress syndrome.
BPD	Bronchopulmonary dysplasia.
BC	Before Christmas.
BaP	Benzo(a)pyrene.
BR	Bronchial responsiveness.
CHD	Congenital heart disease.
CLD	Chronic lung disease.
CO2	Carbon dioxide.
CRP	C-reactive protein.
CPAP	Continuous Positive Airway Pressure.
CO	Carbon Monoxide.
COLD	Chronic obstructive lung disease.
COHg	Carboxyhaemoglobin.
CBC	Complete blood count.
C.S.	Cesarean section.
DNA	Deoxyribonucleic acid.
ETS	Environmental Tobacco Smoke.
ELISA	Enzyme linked immunosorbent assays.
ED	Emergency department.
ESR	Erythrocyte sedimentation rate.
1st	First.
4th	Forth.
5th	Fifth.
GPS	Gas phase cigarette smoke.
Hb	Haemoglobin.
HMPV	Human metapneumovirus.
hCAP	Human cathelicidin antimicrobial peptide.

List of Abbreviations (cont...)

HAI	Healthcare associated infection.
HCN	Hydrogen cyanide.
HDL	High density lipoprotein.
HS	Highly significant.
IV	Intravenous.
ICU	Intensive care unit.
LRIs	Lower respiratory infections.
LBW	Low birth weight.
LRTI	Lower respiratory tract infection.
MENA	The Middle East and North Africa.
MS	Mainstream.
mRNA	Messenger ribonucleic acid.
μg	Microgram.
nCPAP	Nasal Continuous Positive Airway Pressure.
NPV	Negative predictive value.
n	Number.
NS	Nonsignificant.
NICU	Neonatal intensive care unit.
ng/ml	Nanogram per milliliter.
02	Oxygen.
OR	Odds ratio.
PaCo2	Arterial carbon dioxide tension.
PaO2	Arterial oxygen tension.
PICU	Pediatric Intensive Care Unit.
PAHs	Polyaromatic hydrocarbons.
PVD	Peripheral vascular disease.
PPV	Positive predictive value.
RSV	Respiratory syncytial virsus.

List of Abbreviations (cont...)

DEVIC	DCV have a sime a shaha line
RSVIG	RSV hyperimmune globulin.
RSP	Respirable suspended particulates.
RDAI	Respiratory distress assessment instrument.
RD	Respiratory distress.
ROC	Receiver operating characteristic.
r	Correlation coefficient.
SIDS	Sudden infant death syndrome.
SS	Sidestream.
SPSS	Statistical program for social science version.
S	Significant.
S.D.	Standard deviation.
2^{nd}	Second.
SHS	Secondhand smoke.
SaO2	Saturated oxygen.
TLR	Toll-like receptors.
TSNAs	Tobacco-specific nitrosamines.
3rd	Third.
UTI	Urinary tract infection.
URTI	Upper respiratory tract infection.
WBCs	White blood cells.

INTRODUCTION

(V) iral bronchiolitis is the main reason for hospitalization for respiratory tract illness in infants (*Zorc & Hall*, 2006). It can also cause respiratory insufficiency in approximately half the patients admitted to the PICU (Pediatric intensive care unit) with this diagnosis (*Wang*, 1995 & Torres, 2003).

Bronchiolitis is a disorder of the lower respiratory tract that occurs most commonly in young children and is caused by infection with seasonal viruses such as RSV (respiratory syncytial virus) (*Hall et al., 2009*). More than one third of children develop bronchiolitis during the first 2 years of life (Zorc & Hall, 2006; Yorita et al., 2008).

Clinical assessment for the severity of bronchiolitis can be done by a RDAI (respiratory distress assessment instrument) score which is based on wheezing & chest retractions (*Brasi et al., 2010*).

Tobacco smoke is the most common and important indoor environmental pollutants to which children are exposed. The effect of tobacco smoke exposure was found to be more prominent in infants. It is now clear that passive smoking of children is associated with a higher rate of respiratory problems like asthma, bronchitis, pneumonia, bronchiolitis as well as chronic otitis media and sudden infant death (Gurkan et al., 2000).

Passive smoking increases the incidence of respiratory infections and bronchial hyper-responsiveness. Sudden heavy cigarette smoke exposure may predispose to an acute respiratory infection. Thus; it may be hypothesized that passive smoking may influence the development of RSV bronchiolitis *(Gurkan et al., 2000)*.

Hair analysis for nicotine and its metabolite cotinine can be used as a biological marker for exposure to smoking in infants and children. During the last two decades, hair analysis emerged as an objective biological marker for cumulative and temporal account of exposure to cigarette smoking *(Tepper et al., 2005)*.

Urine cotinine can be used as a biomarker for children exposed to passive smoking (*Krzywiecka et al., 2006*).

Cotinine, a product of the metabolism of nicotine, is measurable in urine and, correlates strictly and directly to environmental tobacco smoke (ETS) exposure; therefore representing a well-known internal dose marker (*Bono et al.*, 2005). Evaluation of cotinine concentration in urine allows distinguishing the passive from the active tobacco smokers (*Wiergowski et al.*, 2006).