Expression of Melanoma Antigen Encoding Gene-A3 in Acute Myeloid Leukemia

Thesis

Submitted in partial Fulfillment of the Requirements for the Master Degree in Clinical and Chemical Pathology

> By Noha Said Semary M.B.B.Ch

Under Supervision of

Prof. Dr. Hala Mohammed Farawela

Professor of Clinical and Chemical Pathology Faculty of Medicine - Cairo University

Assist. Prof. Dr. Rania Ahmed Zayed

Assistant Professor of Clinical and Chemical Pathology Faculty of Medicine - Cairo University

Assist. Prof. Dr. Manal Mohamed Mahmoud Makhlouf

Assistant Professor of Clinical and Chemical Pathology Faculty of Medicine - Cairo University

> Faculty of Medicine Cairo University 2012

Acknowledgement

First, thanks are all to **GOD** for blessing me in this work until it had reached its end, as a little part of his generous help throughout my life.

I am greatly indebted to my supervisors for their advice, cooperation, support and encouragement throughout the preparation of the work.

I wish to express my deep gratitude and profound appreciation to *Prof. Dr. Hala Mohammed Farawela*, Professor of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, for her continuous encouragement, endless support and precious advice.

I would like to express my sincere gratitude and appreciation to *Assist. Prof. Dr. Rania Ahmed Zayed*, Assistant Professor of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, for her kind supervision, continuous encouragement and support.

I would like to express my sincere gratitude to *Assist. Prof. Dr. Manal Mohamed Mahmoud Makhlouf*, Assistant Professor of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, for her great support and her friendly attitude which has been my inspiration during the preparation of this work.

Abstract

Melanoma antigen encoding gene-A3 (MAGE-A3), also called cancer/testis (CT) antigen, is a member of MAGE-multigene family which is located on the long arm of the X chromosome and its expression can be caused by promoter region demethylation. The MAGE-A3 proteins' functions are unknown but it was found to play a role in cell cycle progression, transcriptional regulation and drug resistance.

The present work aims to study the frequency of expression of MAGE-A3 on the transcriptional level in fresh leukemic blasts cells isolated from patients with acute myeloblastic leukemia to define its role in the development of AML as well as to evaluate future probable application in tumor - immunotherapy.

This study included 40 de novo AML patients as well as 30 age and sex matched normal healthy subjects as a control group. They were all subjected to reverse transcriptase-polymerase chain reaction (RT-PCR) assay for detection of MAGE-A3 gene expression.

Our study revealed that 23 AML patients (57.5%) expressed the MAGE-A3 gene, while none of the control group subjects (0%) expressed this gene. It was found that MAGE-A3 gene expression was associated with increased risk of AML with OR 2.763 and 95% CI 1.890-8.041.

Conclusion: MAGE-A3 gene expression may have a clinical relevance and important role as a risk factor in the development of AML.

Key words : AML : Acute myeloid leukemia - LAAs: leukemia associated antigens - MAGE: Melanoma antigen encoding gene - CTA: Cancer testis antigens .

I

Contents

Topics	Page
Introduction	1
Aim of the work	2
Review of Literature	3
Acute myeloid leukemia	3
Cancer testis antigens	56
Participant and Methods	84
Results	97
Discussion	115
Summary	122
Recommendations	124
References	125
Appendix	161
Arabic Summary	

List of Tables

Table		Page
Table (1)	Morphologic (FAB) classification of AML.	10
Table (2)	MIC classification of AML, showing the association of morphology (FAB) with cytogenetics and immunophenotyping.	11
Table (3)	Recent WHO Classification.	14
Table (4)	Cytochemistry of AML.	39
Table (5)	Panel of MoAbs to differentiate AML and ALL.	40
Table (6)	Immunologic phenotypes of AML.	40
Table (7)	Prognostic factors in acute myeloid leukemia.	45
Table (8)	Cytogenetic and molecular classification for risk grouping in acute myeloid leukemia.	46
Table (9)	Genes whose mutations or changes in expression occur recurrently in cytogenetically normal AML and have clinical significance.	47
Table (10)	Components of cDNA synthesis kit.	89
Table (11)	The reaction components for a total 50 µl reaction volume.	91
Table (12)	Age distribution of the patients and the control group.	97
Table (13)	Laboratory characteristics of the patients and the control group.	101
Table (14)	MAGE-A3 expression among the patients and control group.	102

	Table	Page
Table (15)	Statistical comparison between AML patients and control group as regard their clinical presentation.	105
Table (16)	Statistical comparison between AML patients and control group as regard their laboratory data.	106
Table (17)	Statistical comparison between MAGE-A3 positive and negative AML patients as regard their Age and Sex.	107
Table (18)	Statistical comparison between MAGE-A3 positive and negative AML Patients as regard their clinical presentation.	107
Table (19)	Statistical comparison between MAGE-A3 positive and negative AML patients as regard their laboratory data.	111
Table (20)	Statistical association between MAGE-A3 positive and negative AML patients and both good and bad cytogenetic abnormality markers.	113
Table (21)	Pearson correlation between MAGE-A3 positivity and other parameters among AML cases.	114
Table (22)	Statistical comparison between MAGE-A3 expression in the two studied groups; AML patients and control.	114

List of Figures

	Figure	Page
Figure (1)	Expression of cancer testis antigens in melanoma, normal testis and AML blasts.	66
Figure (2)	Chromosomal locations of the human MAGE subfamilies.	69
Figure (3)	Schematic representations of the human MAGE- A1, -A3, -A9, -A11, -B1, and -D2 proteins.	70
Figure (4)	Sex distribution of AML patients.	97
Figure (5)	Clinical presentation of AML patients.	97
Figure (6)	Sex distribution of the control group.	98
Figure (7)	FAB classification of AML patients.	100
Figure (8)	Cytogenetic abnormalities of AML patients.	101
Figure (9)	RT-PCR analysis of MAGE-A3 expression in AML patients.	102
Figure (10)	Rt-PCR analysis of MAGE-A3 expression in the control group subjects.	103
Figure (11)	Sex distribution of MAGE-A3 positive patients.	107
Figure (12)	Sex distribution of MAGE-A3 negative patients.	107
Figure (13)	Clinical presentation of MAGE-A3 positive and negative AML patients	108
Figure (14)	FAB classification of MAGE-A3 positive patients.	110
Figure (15)	FAB classification of MAGE-A3 negative patients.	110

List of Abbreviations

ACS	American Cancer Society
alloSCT	Allogeneic hematopoietic stem-cell transplantation
ANAE	Alph naphthyl acetate esterase non specific esterase
AP	Acid phosphatase
ASCT	Autologous hematopoietic stem-cell transplantation
ATRA	All- trance retinoic acid
BAALC	Brain and acute leukemia cytoplasmic
BDCA-	Blood dentritic cell antigen 2 protein/ c-type lectin-like
2/CD303	domain
BM	Bone marrow
CAE	Chloracetate esterase
CBC	Complete blood count
CD2AP	CD2- associated protein
CEBPA	CCAAT/ enhancer binding protein alpha
CGH	Comparative genomic hybridization
CI	Confidence interval
CLA	Tran-smembrane tight junction protein claudin
CN-AML	Cytogenetically normal- AML
CNS	Central nervous system
CRP	C- reactive protein
CR	Complete remission
CSF	Cerebro- spinal fluid
СТА	Cancer testis antigens
DFS	Disease free survival
DIC	Disseminated intravascular coagulopathy
DNA	Deoxyribonucleic acid
ECM	Extracellular matrix

EDTA	Ethylene diamine tetra- acetic acid
EM	Electron microscopy
FISH	Fluorescence in situ hybridization
FLK2	Fetal liver kinase 2
FLT3	Fms like tyrosine kinase 3
GATA	Glutamyl-t RNA amidotransferase subunit A
GVHD	Gravt versus host disease
HGFs	Hematopoietic growth factor
HSCs	Hematopoietic stem cells
HSCT	Hematopoietic Stem cell transplantation
LAAs	Leukemia associated antigens
LAT	Linker for activation of T cells
LDL	Low density lipoprotein
LM	Light microscopy
MAGE	Melanoma antigen encoding gene
MDS	Myelodysplastic Syndrome
MHC	Major histocompatibility complex
MIC	Morphologic immunologic cytogenetic
MKL	Megakaryocytic leukemia
MLL	Mixed lineage leukemia
MN1	Menenigioma 1
MoAB	Monoclonal antibody
MPL	Myeloproliferative leukemia
MPN	Myeloproliferative neoplasm
NAP	Neutrophil alkaline phosphatase
NASDE	Naphthol ASD chloroacetate esterase
NEC	Non erythroid cells
NK/T-cell	Natural killer/ T cell
NOS	Not otherwise specified

NPM1	Nucleophosmin
NSE	Non specific estrase
OR	Odds ratio
OS	Overall survival
PAS	Periodic acid Schiff
PB	Peripheral blood
PDGF-R	Platelet derived growth factor receptor
PMN	Polymorphonuclear leucocyte
PTD	Partial tandem duplication
RAR a	Retinoic acid receptor alpha
RB	Retinoblastoma
RNA	Ribonuclic acid
RTKIII	Receptor tyrosine kinase
RT-PCR	Reverse transcription polymerase chain reaction
SBB	Sudan black B
SKY	Specral karyotyping
STK1	Stem cell tyrosine kinase
TCL1	T cell lymphoma protein/A
TDT	Terminal deoxynucletoidyl transferase
TLC	Total leukocytic count
TSG	Tumor suppressor gene
UAL	Undeffrentiated acute leukemia
WBC	White blood cell
WT1	Wilm's tumor 1

Introduction

Leukemias, myelodysplastic syndromes (MDS), lymphomas, and multiple myeloma (MM) are complex diseases with a wide range of clinical, morphological, biologic, cytogenetic, molecular, and immunophenotypic features (*Estey*, 2001). Although significant progress has been made in the management of these disorders, the majority of patients with leukemia or lymphoma who fail front-line therapies or who relapse after an initial response die from progressive disease. As the relative ineffectiveness and toxicities of traditional cytotoxic therapies become more appreciated, the search for therapeutic advances is increasingly focused on affecting the critical steps involved in the development and mutation of malignant clones (Lowenberg, 2004).

Leukemia-associated antigens such as proteins encoded by melanoma antigen-encoding genes (MAGE) might provide tools for immunotherapy of leukemia (*Martínez et al., 2007*).

Tumor-specific antigens recognized by autologous T lymphocytes are encoded by genes, including those of the MAGE gene family which includes MAGE-A, -B and –C families that encodes peptides recognized by autologous cytotoxic T lymphocytes in a MHC class-I restricted fashion (*Lucas et al., 2000*). MAGE-A genes are located in the chromosome Xq whereas MAGE-B, also called DAM-6, are located on chromosome Xp (*Simpson et al., 2005*).

MAGE-A3 gene is a member of a multigene family which is composed of three exons and the large open reading frame is entirely located in the third exon (*Andrade et al., 2008*).

1

MAGE-A3 gene is silent in normal healthy adult tissues with the exception of placenta and testis where it appears to be expressed in male germ-line cells that do not bear HLA class-I molecules (*Eifuku et al., 2001*).

MAGE-A3 is widely expressed in cancers of several histological types such as melanomas, lung carcinomas, head and neck tumors, bladder carcinomas, ovarian tumors, seminomas, neuroblastomas, hepatocellular carcinomas, colorectal carcinomas and osteosarcomas (*Martínez et al.*, *2007*). Also MAGE-A3 is expressed in hematological malignancies but in a lesser frequency than solid tumors (*Adams et al.*, *2002*).

Aim of the Work

The present work aims to study the frequency of expression of MAGE-A3 on the transcriptional level in fresh leukemic blasts cells isolated from patients with acute myeloblastic leukemia to define its role in the development of AML as well as to evaluate future probable application in tumor immunotherapy.

Acute Myeloid Leukemia

Definition:

Acute myeloid leukemia (AML) is a hematopoietic stem cell disorder characterized by a block in differentiation of hematopoiesis, resulting in growth of a clonal population of neoplastic cells or blasts (*Shipley and Butera, 2009*).

The cell of origin in AML is a blast that most often show myeloid or monocytic differentiation. In approximately 5 to 10% of patients blasts have erythroid or megakaryocytic differentiation. For this reason, acute non- lymphoblastic leukemia (ANLL) has been considered a more precise term but AML is more common and is the recommended term (*Cheson et al., 2003*).

Epidemiology:

Acute myeloid leukemia (AML) has an incidence of 2-3 per 100,000 in children rising to 15 per 100,000 in older adults. It can occur at all ages but has its peak incidence in seventh decade (*Burnett, 2005*).

AML accounts for 15 to 20 percent of the acute leukemias in children and 80 percent of acute leukemias in adults. It's slightly more common in males. Little difference in incidence is seen between individuals of African or European descent at any age, while a lower incidence is seen in persons of Asians descent. An increase in frequency of AML is seen in Jews, especially those of Eastern European descent (*Liesveld and Lichtman, 2006*).

Pathogenesis:

Acute myeloid leukemia is believed to begin in a single somatic hematopoietic progenitor that transforms to a cell incapable of normal differentiation. Many of these cells no longer possess the normal property of apoptosis resulting in a cell with prolonged life-span and unrestricted clonal proliferation. A Major cause of morbidity and mortality is the deficiency of normal functioning mature hemopoietic cells, rather than the presence of numerous malignant cells (*Estey and Döhner, 2006*).

Development of AML results in a block of differentiation, increased proliferation and inhibition of apoptosis. This has been hypothesized to be due to multiple genetic events, activation or inappropriate expression of surface membrane hemopoietic growth factors (*Zhou et al., 2000*).

1. Genetic Factors:

The somatic mutation results from a chromosomal translocation in nearly 80% of patients. The translocation results in rearrangement of a critical region of a proto-oncogene. The fusion of portions of two genes usually doesn't prevent the process of transcription and thus the fusion gene encodes a fusion protein that, because of its abnormal structure, disrupts a normal cell pathway and leads to malignant transformation of the cell. This protein product is often a transcription disrupts the regulatory factor that sequences that control differentiation, growth rate or survival of blood cell progenitors (*Kelly and* Gilliland, 2002).