Synthetic Study and Biological Evaluation of new Heterocyclic Systems

"Submitted for the degree of Master of Science As a partial fulfillment for requirements of the master of Science"

"Organic Chemistry"

Sameh Ibrahim Ahmed Sakr

Thesis advisors

Prof. Dr. Hassan M. Fawzy Madkour

Professor of Synthetic and Heterocyclic Organic Chemistry, Faculty of Science, Ain Shams University

Dr. Mohamed Kamel Z. Badran (Late)

Consultant of toxicology department, Armed Forces Laboratories for Medical Researches and Blood Bank

Dr. Marwa Sayed Salem

Lecturer of Organic chemistry, Faculty of Science, Ain Shams University

> Department of Chemistry Faculty of Science Ain Shams University 2013

Synthetic Study and Biological Evaluation of new Heterocyclic Systems

By

Sameh Ibrahim Ahmed Sakr B. Sc. (BioChemistry-Chemistry)

Thesis Advisors

Approved

Prof. Dr. H. M. F. Madkour Professor of Synthetic & Heterocyclic Organic Chemistry, Faculty of Science, Ain Shams University

Dr. M.K. Z. Y. Badran (Late)

and Blood Bank

Dr. M. S. Salem Lecturer of organic chemistry, Faculty of Science, Ain

Shams University

Head of Chemistry Department

Prof. Dr. Hesham Ahmed Madian

CONTENTS

Summary	i
Introduction	1
1- Synthesis of (1H)-pyridone derivatives	2
1.1. From unsymmetrical diketones	2
1.2. From 2(1H)-pyrone derivatives	4
1.3. From chalcones	6
1.4. From nitroimidazole derivatives	8
1.5. From nitrothiazole	10
1.6. From Baylis-Hillman acetate	11
1.7. From pyrazole derivatives	14
1.8. From enamine derivatives	15
1.9. From indanone derivatives	16
1.10. From pyridine N-oxide derivatives	17
1.11. From aromatic ketone derivatives	18
1.12. From sulfolene derivatives	21
1.13. From pyridine derivatives	22
1.14. From imines	23
1.15. From substituted keto-dioxinones	24
1.16. From propiolamide and cyclic β -keto methyl esters	24
1.17. From tetrabutylammoniumpyridin-2-olates	25
1.18. From Reformatsky reagent and nitrile	26
2-Reactions	27
2.1. Condensation	27
2.2. Alkylation	32
2.3. Reaction with arylidine	36
2.4. Reaction with nitrile oxides	38
2.5. Hhdrolysis	39
2.6. Transesterification	39
2.7. Diels-Alder Reaction	40
2.8. Thiation	44
2.9. Amination	45
3-Biological activity	46
Aim of the work	58
Discusion	59

Part I Synthetic utility of 2-hydrazinylnicotinonitrile moiety in	60
Heterocyclic synthesis	
Part II Synthetic utility of acetohydrazide moiety in heterocyclic synthesis	131
A) Synthesis of the nicotinonitrile derivatives	160
i) Condensation with p-anisaldehyde	160
ii) Condensation with monosaccharide	168
iii) Effect of aliphatic acids on compound 11	176
B) Synthesis of pyrazole derivatives	192
i) Reaction with acetyl acetone	192
ii) Reaction with 2-ethoxymethylene-cyanoacetate	200
iii) Reaction with benzoyl chloride	209
iv) Reaction with benzoic acid	217
C) Hydrazide 11 as ascaffold for the synthesis of new	225
heterocyclic systems	
i) Reaction with carbon disulfide	225
ii) Reaction with phenyl isothiocyanate	234
iii) Reaction with sodium nitrite	242
iv) Reaction with ethyl acetoacetate	251
Biological activity	260
1. Antimicrobial Evaluation	260
2. Antivirus Evaluation	262
Experimental	265
1. Synthesis	266
2. Biological activites	277
2.1. Measurement of antimicrobial activity using the Diffusion	277
Disc Method	
2.2. Cytotoxicity test	279
2.3. Cell morphology evaluation by inverted light microscopy	279
2.4. Cell viability assay	280
2.5. Determination of adenovirus type 7 and rotavirus Wa strain	280
Titers Using plaque assay	
References	282

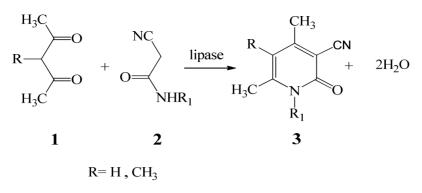
INTRODUCTION

The heterocyclic skeleton containing nitrogen atom is the basis of many essential pharmaceuticals and physiologically active natural products.

2(1H)-Pyridinone is nitrogen containing synthetically designed scaffold with a broad spectrum of biological activities. 2(1H)-Pyridinone moiety frequently found in a variety of interesting compounds has received remarkable attention due to its promising features as a key scaffold and in privileged building blocks.

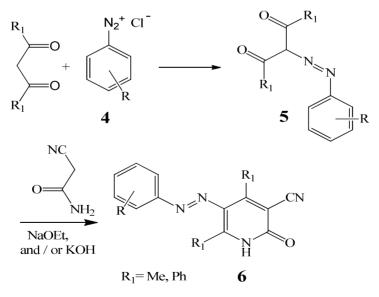
It exists as tautomers. Other names of 2(1H)pyridinone are 2-pyridone, 2(1H)-pyridone, 1-H-pyridine-2one, 1, 2-dihydro-2-oxopyridine, 2-pyridinol, 1H-2-pyridone, 2-hydroxypyridine.

The most prominent feature of 2-pyridone is the amide group; a nitrogen with a hydrogen bound to it and a keto group next to it. In peptides, amino acids are linked by this pattern, a feature responsible for some important physical and chemical properties. In this and similar molecules, the hydrogen bound to the nitrogen is suitable to form strong hydrogen bonds to other nitrogen and oxygen containing species. The pyridinone structure is stable one, and there is a strong intermolecular hydrogen bonding between the nitrogen of one molecule and the oxygen of another. The hydrogen bonding is repeated throughout the


1

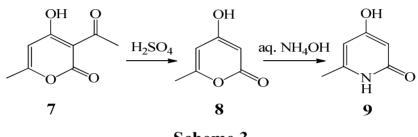
structure linking molecules in endless helices. This conclusion is based on the fact that the N-H distance is 1.02 A° , very nearly the normal covalent bond length of 1.00 A° , whereas the observed O-H distance greatly exceeds the normal covalent distance. This obviates the possibility that 2(H)-pyridinone exists as a hydrogen-bonded dimer.

1. Synthesis of 2(1H)-pyridone derivatives:

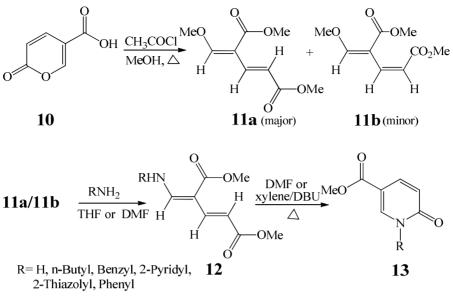

1.1. From unsymmetrical diketones

Lipases, including Candida rugosa, formerly C. cvlindracea, were used to synthesize the substituted 3cvano-2-pyridones [81, 82, 84, 85,103]. It has been shown that when an unsymmetrical diketone was used, different ratios of products were obtained in the chemical and enzymatic reactions [81]. Due to the high selectivity of lipases, practically only one, of two possible isomers, was obtained [81, 84]. In addition, the influence of N-substituted cyanoacetamides and 3- substituted acetylacetones on the of 4,6-disubstituted-3-cyano-2enzymatic synthesis pyridones was studied and it was found that the introduction of alkyl groups into the molecule of acetylacetone had a greater impact on the reaction in comparison to the corresponding substituted cyanoacetamides [85,103] (cf. scheme 1).

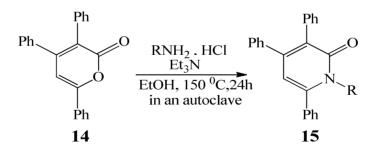
Scheme 1


Dicarbonyl compound was coupled with arenediazonium chloride **4** to give intermediate **5** which then cyclized with cyanoacetamide in presence of sodium ethoxide to yield a pyridone azodye **6**. The use of KOH [83] instead of the previously employed sodium ethoxide [37, 86] was found to be more convenient (cf. scheme 2).

Scheme 2


1.2. From 2(1H)-pyrone derivatives

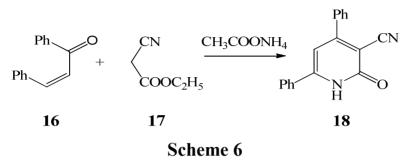
The hydrolysis of 3-acetyl-4-hydroxy-6-methyl-2*H*-pyran-2-one 7 [40] with sulfuric acid afforded compound **8** in 86% yield. Compound **8** was then reacted with aqueous ammonium hydroxide to produce the corresponding pyridone **9** in 80% yield [34] (cf. scheme 3).


Scheme 3

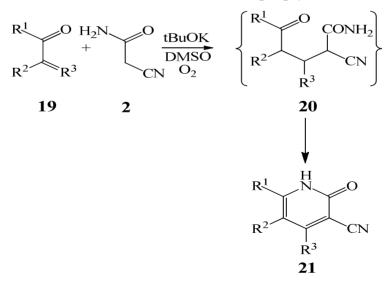
Reaction of coumalic acid 10 with acetyl chloride in refluxing methanol afforded 11a/11b as a mixture of geometrical isomers. 11a was obtained as a major compound along with minor geometrical isomer 11b [88]. This mixture of 11a/11b was reacted with various amines to give dienamino esters 12, which could be isolated or cyclized directly to produce the corresponding 5carbomethoxy-2-pyridones 13 in high yield. [66] (cf. scheme 4).

Scheme 4

The pyridone derivatives were readily synthesized in good yields by the reaction of the corresponding pyrones **14** with primary amines [67] (cf. scheme 5).

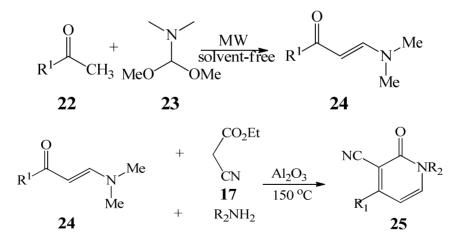


R=Me, Et, n-Pr, iso-Pr, n-Bu, iso-Bu, sec-Bu

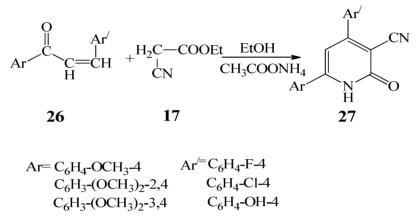

Scheme 5

1.3. From chalcones

Compound **18** can be synthesized by refluxing corresponding chalcones **16** with ethyl cyanoacetate **17** [111] (cf. scheme 6).

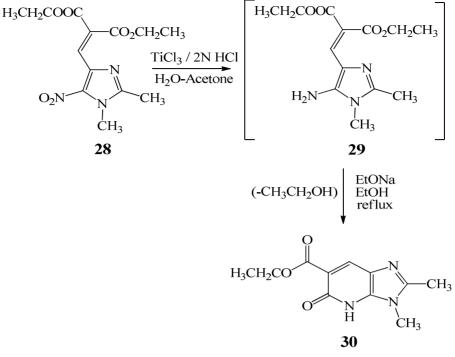


Pyridones 21 could be obtained by oxidation of α,β unsaturated carbonyl compound 19 with cyanoacetamide 2 may be induced by the use of O₂ as an environmentally benign oxidant. Yields of pyridones 21 are good to excellent, and reaction times are short [56] (cf. scheme 7).

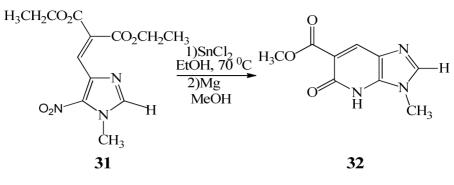

Scheme 7

3-cyano-2-pyridones Substituted have been synthetized from enaminones by multi-component reaction using a catalytic amount of basic alumina (Al₂O₃), Firstly, enaminones 24 were obtained from the reaction of methylacetone N.N-dimethylformamide-22 with dimethylacetal (DMF-DMA) under solvent-free assisted by MW irradiations [61]. These intermediates 24 have been used as one of the key steps in the construction of the pyridone ring system. However, in second step of the synthesis of 2-pyridones. A new MCR has been developed using Al_2O_3 as a clean catalyst; A mixture of enaminone 24, ethyl cyanoacetate 17, and primary amine in the presence of catalytic amount of basic Al₂O₃ was heated at 150°C for 2-3h to afford the corresponding 2-pyridones 25 in excellent yields [59] (cf. scheme 8).

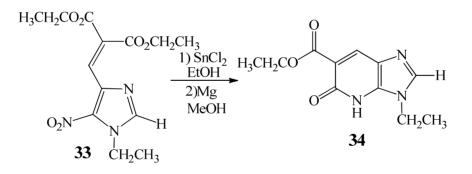
Scheme 8


The condensation of the corresponding 1,3-diaryl-2propen-1-ones **26** with ethyl cyanoacetate in boiling ethanol containing excessive ammonium acetate forms 3cyanopyridone **27** [33] (cf. scheme 9).

Scheme 9


1.4. From nitroimidazole derivatives

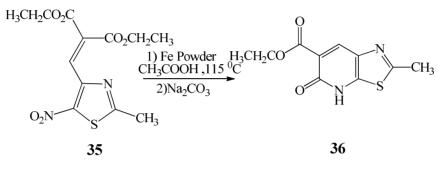
The nitro group of diethyl 2-[(1,2-dimethyl-5-nitro-1*H*-imidazol-4- yl)methylene]malonate **28** was reduced in presence of weak reducing agent, titanium(III) chloride (30 wt % solution in 2N hydrochloric acid) in a H₂O-acetone mixture at room temperature. The resulting intermediate **29** was then heated in ethanolic sodium ethoxide solution to give the corresponding fused pyridone **30** [30] (cf. scheme 10).


Scheme 10

Unfortunately, this method was found to be not applicable to all nitroimidazoles. The 5-nitroimidazoles without alkyl substituents in the 2-position gave poor yields, so, it was necessary to find more general conditions and switched to other metal halides. Thus, it has been found that SnCl₂ in ethanol gave the best results. Reduction of compound **31** occurred with five equivalents of SnCl₂ in ethanol at 70 °C, then the corresponding amine was treated with two equivalents of magnesium (powder) in methanol at room temperature during 20 h leading to the corresponding bicyclic pyridone **32** in 92% yield [30] (cf. scheme 11).

Scheme 11

The imidazopyridone 32 was obtained as the methyl ester due to the transesterification reaction in methanol. These conditions were applied to the *N*-ethyl imidazole analogue of 31, but gave the imidazopyridone 34 in poor yield [30] (cf. scheme 12).



Scheme 12

1.5. From nitrothiazole derivatives

On the other hand, both the procedures previously described gave very poor yields of thiazolopyridone **36** when applied to the nitrothiazole **35**. Consequently Other

reaction conditions using iron in glacial acetic acid has been reported in previous publication [31]. Under these conditions, diethyl 2-[(2-methyl-5-nitrothiazol-4-yl)methylene]malonate **35** afforded the target lactam **36** [30] (cf. scheme 13).

Scheme 13

1.6. From Baylis-Hillman acetate

The α , β -unsaturated methyl ester **39** was synthesized from the reaction of Baylis-Hillman acetate 37 and methyl acetoacetate **38** in 77% yields [44, 52, 53, 62- 64]. The ester **38** indeed produced 2-pyridone **44**, in low yield (16%), along with three other products, 41 (34%), 42 (7%) and 43 (5%), when subjected to the conditions previously employed for the synthesis of pyridine derivatives (NH₄OAc (3.0 equiv)/AcOH/reflux) [96]. Increasing the reaction temperature or varying the solvent (propionic or butyric acid) did not improve the results. The reaction gave much better yield of 44(75%), while suppressing the formation of by-products 41(4%), 42 (1-2%) and 43 (5%), when 39 was