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Summary

Our two-fold main objective of this work is to introduce and investigate thoroughly two

new notions; namely those of rad-injectivity and almost injectivity. Let M , and N be right

R-modules, where R is an associative ring with unity and all R-modules are unitary. M is

called rad-N -injective if any R-homomorphism f : K −→M where K is a submodule of the

Jacobson radical J(N) of the module N , extends to N . A right R-module M is called almost

injective, if M = E⊕K where E is injective and K has zero radical. A ring R is called right

almost injective, if RR is almost injective. Examples are given to show that these notions

are distinct from those of mininjectivity, simple-injectivity and injectivity. Most of the basic

results on injective modules are shown to hold for rad-injective modules. For example, the

class of rad-injective right R-modules is closed under isomorphisms, direct products, finite

direct sums, and summands. The classes of V -rings, semilocal rings, pseudo-Frobenius and

quasi-Frobenius rings are characterized in terms of rad-injective rings and almost injective

rings. It is not known whether ring R for which every finitely generated right R-module

(cyclic R- module) can be embedded in a free right R-module, is quasi-Frobenius (artinian)

or not. In this work we provide a positive answer if we assume in addition that the ring R

is rad-injective or almost injective or right weak CS.

The new result we have obtained so far are displayed in chapters 3 and 4 of this disser-

tation.

In what follows, we give a brief coverage of the contents of this work. The thesis consists

of four chapters.

In the first chapter, we present the definitions and the basic properties of injective and

continuous modules. Hereditary, Noetherian, and V -rings are characterized in terms of

injective modules. We survey several characterizations of quasi-Frobenius rings in particular

the result of Faith and Walker on quasi-Frobenius rings. The rest of the chapter is concerned

with the structure theory of pseudo-Frobenius rings. The material in this chapter is standard

and vitally important for our study and have been included to make the presentation self-

contained as far as possible.

The second chapter consists of two main sections. In the first section, we display minin-

jective rings studied in (cf, [45]). A ring R is called right mininjective if every isomorphism
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between two simple right ideals is given by left multiplication. It is shown that R is quasi-

Frobenius if and only if R is two sided-artinian and two-sided mininjective. In the second,

section we draw our attention to simple-injective rings, where according to Harada, (cf,

[26]), a module K is called simple-N -injective if, for every submodule L of N , every R-

homomorphism γ : L −→ N with γ(L) is simple extends to N . Furthermore, it is shown

that a ring R is quasi-Frobenius if and only if R is right noetherian and right simple-injective

ring such that socle of the module RR is essential submodule of RR i.e. Sr ⊆ess RR . Finally,

it is shown that a semiprimary ring is right self-injective if and only if it is simple-injective.

We tried to summarize these known results to suit specialists interested in other lines of

algebra and also to make the forthcoming presentation of the remaining chapters clearer and

adequate.

In the third chapter, we introduce and investigate the notions of rad-injective and almost

injective modules. This chapter is divided into three sections. After introducing the notion

of rad-injective modules in the first section we proved that the class of rad-injective right

R-modules is closed under isomorphisms, direct products, finite direct sums, and summands.

We proved that if R is semilocal ring, then every rad-injective right R-module is injective.

We show that if R is a semiprimary, right rad-injective ring with J2 = 0, then R is quasi-

Frobenius, if R is semilocal and right rad-injective with ACC on right annihilators, then R is

quasi-Frobenius. We round off this section by offering an important characterization of QF

-rings. Indeed, we prove that R is right artinian, and right rad-injective ring if and only if R

is quasi-Frobenius. In the second section of this chapter, we investigate the relation between

rad-injectivity and other injectivity properties. We show that if M is right rad-injective,

then M is right mininjective and examples are given to show that the converse is not true.

Example 3.2.27 shows that the two classes of simple-injective and rad-injective modules are

different. The following conditions are equivalent for a ring R: 1. R is quasi-Frobenius. 2. R

is a right rad-injective, right noetherian with Sr ⊆ess RR. 3. R is a right rad-injective, right

Goldie ring with Sr ⊆ess RR. This extends a well known result in case R is simple injective,

(cf, [47], Theorem 6.44). Another convenient characterization of QF-rings is provided in

Proposition 3.1.22, which states that: R is quasi-Frobenius if and only if R is left perfect,

left and right rad-injective. We show that R is a right rad-injective, and right finitely

cogenerated ring if and only if R is a right pseudo-Frobenius. We also show that A ring R is
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a semilocal, right rad-injective with right essential socle if and only if R is pseudo-Frobenius.

Recall that a ring R is called a right V -ring if every simple right R-module is injective (cf,

[39]). The class of V -rings is properly contained in the class of right GV -rings (rings for

which simple singular right R-modules are injective), (cf, [27]). We show that R is a right

V -ring if and only if every right R-module is rad-injective. In third section of this chapter,

we investigate almost injective modules and rings. In Proposition 3.3.35 the relation between

rad-injectivity and almost injectivity has been established. Proposition 3.3.35 is , in fact, a

key proposition which enables us to go further and deeper in our study. Actually, We show

that if M is a rad-injective module, then M is almost injective, and an example is given to

show that the converse is not true. We show that the following statements are equivalent: 1.

Every almost injective right R-module is injective. 2. Every almost injective right R-module

is quasi-continuous. 3. R is a semilocal ring. Faith and E. A. Walker have shown in (cf, [33],

Theorem 13.6.1) that R is quasi-Frobenius if and only if every right projective R-module is

injective if and only if every right injective R-module is projective. We extend this result

to rad-injective modules as follows: R is quasi-Frobenius if and only if every rad-injective

right R-module is projective. We also prove that every projective right R-module is almost

injective if and only if R = E ⊕ T, where E and T are right ideals of R, ER is Σ-injective

(arbitrary direct sums of copies of ER are injective) and TR has zero radical. A ring R which

is both right Kasch and right mininjective is not necessarily pseudo-Frobenius. Also if R is

right Kasch and right simple-injective, we do not know whether R is right pseudo-Frobenius

or not. We give a partial answer for this question in (Theorem 3.3.48)which states the

following statements are equivalent for a ring R: 1. R is a right pseudo-Frobenius ring. 2.

R is a semiperfect, right almost injective ring with soc(eR) 6= 0 for each local idempotent e

of R. 3. R is a right Kasch, right almost injective ring. 4. R is a right almost injective ring

and the dual of every simple left R-module is simple. One of our main results is Proposition

3.3.50 in which we proved that the following statements are equivalent for a ring R: 1. R is

quasi-Frobenius. 2. R is left perfect, left and right rad-injective ring. 3. R is left perfect,

left and right almost injective ring. This Theorem extends a well-known result of B. Osofsky

(cf, [48]) on self-injective rings. It is not known whether right CF -rings (FGF -rings) are

right artinian (quasi-Frobenius). In this section we provide a positive answer as follows: the

following statements are equivalent for a ring R: 1. R is quasi-Frobenius. 2. R is right CF

and right rad-injective. 3. R is right CF and right almost injective.
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In chapter four, we study soc-injectivity and (strongly) soc-injectivity of modules and

rings. This chapter is divided into two sections. In the first section of this chapter we

investigate soc-injective , soc-C1 soc-C2, and soc-C3 modules. We introduce new properties

of soc-injective, soc-C2, soc-C3 and CESS-module. We show that if M1 and M2 are right R-

modules and M = M1⊕M2. Then M1 is soc-M2 injective if and only if for every semisimple

submodule S of M such that S ∩ M1 = 0, there exists a submodule A of M such that

M = M1 ⊕A and S ⊆ A. We show that if M is a CESS-module. Then 1. If M/soc (M) is

finite dimensional, then M = K ⊕ S where K is finite dimensional and S is semisimple. 2.

If M/soc (M) is noetherian, then M = K ⊕ S where K is noetherian and S is semisimple.

3. If M/soc (M) is artinian, then M = K ⊕ S where K is artinian and S is semisimple. In

the second section of the chapter we show that the following statements are equivalent for

a ring R: 1. R is a right pseudo-Frobenius-ring. 2. R is a semiperfect, right rad-injective

ring with soc(eR) 6= 0 for each local idempotent e of R. 3. R is a right finitely cogenerated,

right rad-injective ring. 4. R is a right Kasch, right rad-injective ring. 5. R is a right

rad-injective ring and the dual of every simple left R-module is simple. Gómez Pardo and

Guil Asensio (cf, [21]) proved that CF rings are artinian in case R is a CS. We extend

this results in Theorem 4.2.52 as follows: if R is a right weak CS and right CF ring then

R is right artinian. Gómez Pardo and Guil Asensio (cf, [20]) proved that FGF rings are

quasi-Frobenius in case R is a CS. We conclude by strengthening this result in Theorem

4.2.54 which states that if R is a right FGF a right weak CS ring, then R is quasi-Frobenius.

Throughout this thesis all rings considered are associative with unity and all R-modules

are unitary.

Two papers have been extracted from this dissertation, namely [61] and [57].
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List of Symbols

N Set of natural numbers

Z Rings of integers

Q Field of rational numbers

Zn Ring of integers modulo n

|X| Cardinality of a set X

E (M) Injective hull of the module M

soc (M) Socle of the module M

J (M) Jacabson radical of the module M

dim (M) Uniform (Goldie) dimension of the module M

Z (M) Singular submodule of the module M

Sr, Sl soc (RR), soc (RR)

Zr, Zl Z (RR), Z (RR)

Zr
2 , Z l

2 Z (R/Zr) = Zr
2/Zr, Z (R/Zl) = Z l

2/Zl

J , J (R) Jacobson radical of the ring R

r (X), l (X) Left and right annihilators of the set X

Mn (R) Ring of n× n matrices over the ring R

end (M) Endomorphism ring of the module M

K ⊆ess M K is essential submodule of the module M

K ⊆max M K is maximal submodule of the module M

K ⊆⊕ M K is a direct summand of the module M

M (I) The direct sum of |I| copies of the module M

M I The direct product of |I| copies of the module M

M∗ Dual of the module M i.e. M∗ = Hom(M,R)

modR, Category of right modules over the ring R
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Chapter 1. Preliminaries

In this chapter, we assemble basic concepts and associated necessary results for our study

in this thesis. We are going to present these concepts in a more detailed fashion, so that the

presentation of the thesis becomes more or less self-contained. Throughout this chapter R is

an associative with unity and all modules are right R-modules. For further related results,

the reader is kindly referred to [2], [12], [15], [35], and [40].

1.1. Injective and Continuous Modules (cf, [5], [6], [7], [11] and [47])

Let MR, LR and NR be right R-modules. M is called N-injective if, for any submodule

K of N , any R-homomorphism f : K −→ M can be extended to N . Equivalently, for

each R-monomorphism α : K → N and each R-homomorphism f : K → M there is an

R-homomorphism ψ : N →M such that the diagram

0 // K
α //

f
��

N

ψ~~||||||||

M

commutes i.e., f = ψα.

A module M is called quasi-injective if M is M -injective. M is called injective, if M is

N-injective for all right R-modules N . The ring R is called right (self-)injective, if the right

R-module RR is injective.

Let A be submodules of a module M . Then a submodule C of M is called a complement

of A in M if it is maximal with respect to A ∩ C = 0. Such submodule C always exist,

by virtue of Zorns Lemma; in fact, any submodule C1 of M satisfying A ∩ C1 = 0 can be

enlarged to a complement of A.

A submodule A of a module M is called essential in M or M is essential extension of A

(denoted by A ⊆ess M or A EM ) if for every submodule B ⊆M,A∩B = 0 implies B = 0.

A submodule C of a module M is said to be a closed submodule of M if C has no proper

essential extensions inside M .

If M is a quasi-injective module then M satisfies the following conditions (cf, [30] and

[32]):

1. C1 condition: every submodule of M is essential in a summand
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(a module satisfying this condition is called a CS-module or extending module).

2. C2 condition: if K and L are submodules of M , K ∼= L, and

K ⊆⊕ M, then L ⊆⊕ M.

3. C3 condition: if K and L are submodules of M with K ∩ L = 0, K ⊆⊕ M and

L ⊆⊕ M, then K ⊕ L is a summand of M .

A right R module M is called continuous if M satisfies both C1 and C2; whereas M is

called quasi-continuous or (π-injective module) if M satisfies both C1 and C3. Obviously, ev-

ery injective or quasi-injective or semisimple module is both continuous and quasi-continuous.

We have just seen that the following implications hold:

Injective ⇒ quasi-injective ⇒ continuous ⇒ quasi-continuous ⇒ C1.

In the sequel of this section, we recall the basic properties of injective, continuous and

quasi-continuous modules. Hereditary, Noetherian, and V -rings are characterized in terms

of injective modules.

Proposition 1.1.1. The following statements are true:

1. Let N be a right R-module and {Mi : i ∈ I} a family of right R-modules. Then the

direct product M =
∏
i∈I
Mi is N -injective if and only if each Mi is N -injective,i ∈ I.

2. Let M , N , and K be right R-modules with K ⊆ N. If M is N -injective, then M is

both K-injective and N/K-injective.

3. Let N be a right R-module and {Ai : i ∈ I} a family of right R-modules. Then N is⊕
i∈I
Ai-injective if and only if N is Ai-injective, ∀i ∈ I.

4. If A, B, and M are right R-modules, AR ∼= BR, and M is A-injective, then M is

B-injective.

An additive abelian group G is called divisible if nG = G for any 0 6= n ∈ Z. For example

Q and the Prüfer group Zp∞ for any prime p are both divisible. It is known that a right

Z-module M is injective if and only if M is divisible.

Definition 1.1.2. A module E is called the injective hull of a module M , denoted by

E(M), if E is an essential extension of M and E is injective.

Lemma 1.1.3. If M = ⊕ni=1Mi is a finite direct sum of modules, then E (⊕ni=1Mi) =

⊕ni=1E (Mi).

The following Lemma gives a characterization of relative injectivity in terms of injective

hull.
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Lemma 1.1.4. A module G is M -injective if and only if λ (M) ⊆ G for all R-linear

maps λ : E (M) −→ E (G).

Lemma 1.1.5. A module M is quasi-injective if and only if M is fully invariant in its

injective hull E (M).

Corollary 1.1.6. Let M be a quasi-injective module. If E (M) = ⊕i∈IKi. Then

M = ⊕i∈I (M ∩Ki).

Lemma 1.1.7. (Baer Criterion). A right R-module E is injective if and only if,

whenever T ⊆ R is a right ideal, every map γ : T → E extends to R→ E, that is, γ = c. is

multiplication by an element c ∈ E.

Remark 1.1.8. A module P is projective if and only if for every surjective module

homomorphism f : N → M and every module homomorphism g : P → M , there exists a

homomorphism h : P → N such that fh = g.

A ring R is called right hereditary if the quotient of every injective right R-module is

injective. We see that R is right hereditary if and only if every submodule of a projective

module is projective.

It is well known a direct sum of injective modules need not be injective. However for

noetherian rings we have:

Proposition 1.1.9. The following conditions on a ring R are equivalent:

1. R is right noetherian.

2. Every direct sum of injective right R-modules is injective.

3. Every countable direct sum of injective right R-modules is injective.

Definition 1.1.10. A ring R is called a right V -ring if each simple right R-module is

injective.

Theorem 1.1.11. The following properties of a ring R are equivalent:

1. R is a right V -ring.

2. J (M) = 0 for every right R-module M .

3. J (M) = 0 for every cyclic right R-module M .

4. Every right ideal of R is an intersection of maximal right ideals.

Proof. (1) =⇒ (2). Let M be a right R-module and 0 6= m ∈ M . By Zorn’s Lemma there

is a submodule A of M maximal with respect to m /∈ A. Let D be the intersection of all
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submodules properly containing A. We see that m ∈ D and D/A is simple. So D/A is

injective and M/A = D/A ⊕ K/A, where K is a submodule of M . But m /∈ K. Then

maximality of A implies that K = A and so A is maximal. Therefore J (M) = 0.

(2) =⇒ (3). Clear.

(3) =⇒ (4). Clear.

(4) =⇒ (1). Let S be a right simple R-module, and I a right ideal of R. If 0 6= α ∈

HomR (I, S) and K = Ker (α), then there is a maximal right ideal M such that K ⊆M , and

I *M . Since I/K is a simple R-module, then M∩I = K. Therefore R/M = (M + I) /M ∼=

I/ (M ∩ I) = I/K ∼= S. Define f : R −→ S by f (m+ r) = α (r) (m ∈ M , r ∈ I.) The

map f is well defined since M ∩ I = K = Ker (α). This means that f is an extension of α.

Therefore S is injective.

A ring R is called a right CS ring (respectively, C2 ring, C3 ring) if the module RR

satisfies C1 condition (respectively, C2 condition, C3 condition). For example, Z is CS-ring

and C3 ring but not a C2 ring. The Z-modules Z2 and Z8 satisfy the C1, C2 and C3

conditions, but their direct sum N = Z2 ⊕Z8 is not a CS module. Actually, for S = Z2 ⊕ 0

and K = Z (1 + 2Z, 2 + 8Z), K is contained in only two direct summands N and S⊕K and is

essential in neither. Moreover, N is not a C2 module since the non-summand 0⊕Z (4 + 8Z)

is isomorphic to the summand Z2 ⊕ 0. Hence a direct sum of CS modules, or C2 modules,

may not inherit the same property. (cf, [31])

Let M be a right R-module. If M is an indecomposable module, then M is a C3 module;

M is a C1 module if and only if M is uniform; M is a C2 module if and only if every

monomorphism M −→M is an automorphism.

Example 1.1.12. Let R =

F F

0 F

 where F is a field. Then R is a right and left C1

ring, but neither a left nor right C2 ring.

Proposition 1.1.13. If a module M satisfies C2 condition, then M satisfies C3 condi-

tion.

Lemma 1.1.14. Let A and B be submodules of M such that A ⊆ B. If A is closed in

B and B is closed in M , then A is closed in M .

Lemma 1.1.15.

(1) Any direct summand of a CS module is a CS module.
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(2) In a quasi-continuous module M , isomorphic submodules have isomorphic closures.

Lemma 1.1.16. Let M be a module such that M/soc (M) is finite dimensional. If

⊕∞i=1Mi is an infinite direct sum of submodules of M , then there exists an integer k such

that Mi ⊆ soc (M) for all i ≥ k .

Proof. Write S = soc (M), M = M/S and Ak = ⊕ki=1Mi. Given n ≥ 1, there exists

a submodule U ⊆ Mk+1 such that Mn+1 ∩ Mn = U . Write S = (An ∩ S) ⊕ T , so that

U ⊆ An + S = An ⊕ T for some T ⊆ S. Let π : An ⊕ T −→ T , be the projection with

ker (π) = An. Since U ⊆ Mn+1, we have U ∩ An = 0, and hence the restriction of the map

π to U is monic. Thus U is semisimple, so U ⊆ S and Mn+1 ∩ An = 0 . It follows that

M1 ⊕M2 ⊕M3 ⊕ ..... is a direct sum; so since M is finite dimensional. there exists k such

that M i = 0 for all i ≥ k. Thus Mi ⊆ S = soc (M) for all i ≥ k, as required.

Proposition 1.1.17. Let M be a CS module. If M/soc (M) is finite dimensional, then

M = K ⊕ S where K is finite dimensional and S is semisimple.

Proof. (1). Write S = soc (M) and let T be a closure of S in M . Since M is CS-module we

can write M = T ⊕K for some submodule K of M . Then K ↪→ M/soc (M); so K is finite

dimensional and T is CS module by Lemma 1.1.15. So without loss of generality, we may

assume that M has an essential socle. Suppose that S1 is not a closed simple submodule

of M , and let C (S1) be a closure of S1 in M . As M is CS, set M = C (S1) ⊕M1. If S2

is non-closed simple submodule of M1, write M = C (S1) ⊕ C (S2) ⊕M2. If this continues

indefinitely then Lemma 1.1.16 shows that some C (Sm) will be in soc (M); a contradiction.

So, we may assume without loss of generality that every simple submodule of M is closed

in M . Now suppose that D is a finitely generated submodule of M such that D has an

infinitely generated socle, and let soc (D) = ⊕∞i=1Ai, where each Ai is infinitely generated.

Let C (Ai) be a closure of Ai in M . Then ⊕∞i=1C (Ai) is an infinite direct sum of submodules

of M , and by Lemma 1.1.16 there exists an integer k such that C (Ai) = Ai for all i ≥ k.

By the CS hypothesis M = Ak ⊕ Bk for some Bk of M . Since Ak ⊆ D ⊆ M , it follows

that D = Ak ⊕ (Bk ∩D), and hence Ak is finitely generated, a contradiction. Thus soc (D)

is finitely generated. Since every simple submodule of D is a summand, then by splitting off

all the submodules of D, we can write D = S ⊕ N , where S is semisimple and N has zero

socle. Because soc (D) is essential in D we infer that N = 0 and D is semisimple. Thus M

is semisimple, as required.
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A ring R is called semiregular if R/J is von Neumann regular and idempotents lift modulo

J ; equivalently if, for each a ∈ R there exists e2 = e ∈ aR such that (1− e) a ∈ J .

Lemma 1.1.18. Given MR, write S = end (M) and S = S/J (S), and assume that S

is semiregular and J (S) = {α ∈ S | ker (α) ⊆ess M}. Then:

1. If π2 = π and τ 2 = τ in S satisfy πS ∩ τS = 0, then πM ∩ τM = 0.

2. If M satisfies the C3 condition and
∑

i∈I πiS is a direct in S where π2
i = πi ∈ S for

each i, then
∑

i∈I πiM is direct in M .

3. If M is quasi-continuous and
∑

i∈I πiM is direct in M where π2
i = πi ∈ S for each i,

then
∑

i∈I πiS is a direct in S.

Theorem 1.1.19. Let MR be a continuous module with S = end (MR). Then:

1. S is semiregular and J (S) = {α ∈ S | ker (α) ⊆ess M} .

2. S/J (S) is right continuous.

3. If M is quasi-injective, then S/J (S) is right selfinjective.

Theorem 1.1.20.(Utumi’s Theorem, cf, [53]) If R is right continuous, then R is semireg-

ular, Zr = J and R/J is right continuous.

Proof. Take M = RR in Theorem 1.1.19. and note that

J (R) = {a ∈ R | ker (a·) ⊆ess R} where ker (a·) = r (a).

1.2. Quasi-Frobenius Rings (cf, [41], [42], [43], [51], and [47])

In this section we derive some of the classical characterizations of quasi-Frobenius rings.

However this requires some preliminary work.

A right ideal T is called extensive if every R-linear map α : T −→ R extends to a left

multiplication that is a· : R −→ R with a· |T= α.

Lemma 1.2.21. (cf, [4]) Let A and B be right ideals of R.

1. If A+B is extensive then l (A ∩B) = l (A) + l (B).

2. Conversely, if l (A ∩B) = l (A) + l (B) and α : A+ B −→ R is an R-linear map such

that the restrictions α |A and α |B are given by left multiplication, then α is given by left

multiplication.

Lemma 1.2.22.(Ikeda-Nakayama Lemma, cf, [56]) A ring R is called right F -injective

if it satisfies any of the following equivalent statements:

1. Every R-linear map from a finitely generated right ideal to R extends to R.
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2. R satisfies the following two conditions:

(a) l (A ∩B) = l (A) + l (B) for all finitely generated right ideals A and B of R.

(b) lr (a) = Ra for all a ∈ R.

Corollary 1.2.23. If R is right self-injective, then

1. l (A ∩B) = l (A) + l (B) for all right ideals A and B of R.

2. lr (L) = L for all finitely generated left ideals L of R.

Lemma 1.2.24. Assume that lr (a) = Ra for all a ∈ R and that l (T0 ∩ T ) = l (T0) +

l (T ) for all right ideals T0 and T of R with T0 finitely generated. Then every R-linear map

α : T −→ R with finitely generated image extends to R −→ R.

Lemma 1.2.25. A ring R is right noetherian if and only if a right R-module H exists

such that every right R-module embeds in a direct sum of copies of H.

A module C is said to cogenerate a module M if M can be embedded in a direct product

CI of copies of C, and C is called a cogenerator if it cogenerates every right module. In this

context the following Lemma is useful.

Lemma 1.2.26. A module CR is a cogenerator if and only if ∩{ker (λ) | λ : M −→ C} =

0 for all modules MR.

A right R-module GR is called a generator if every module is an image of a direct sum

G(I) for some set I. The cogenerators are defined dually to the generators. For injective

cogenerators we have.

Proposition 1.2.27. If ER is an injective module, then E is a cogenerator if and only

if every simple right module can be embedded in E.

Proposition 1.2.28. Let {Ki | i ∈ I} be a system of distinct representatives of the

simple right R-modules, and write C = ⊕i∈IE (Ki). Then

1. CR is a cogenerator.

2. CR embeds in every cogenerator.

The module C = ⊕i∈IE (Ki) in Proposition 1.2.27 is called a minimal cogenerator for

the category of right R-modules.

Definition 1.2.29. A ring R is called a right Kasch ring if every simple right module

K embeds in RR; equivalently if RR cogenerates K.

Every semisimple artinian ring is right and left Kasch. If R is local ring, then R has only

one simple right module and R is right Kasch if and only if Sr 6= 0.
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Proposition 1.2.30. The following are equivalent for a ring R:

1. R is right Kasch.

2. Hom (M,RR) 6= 0 for every finitely generated right R-module M .

3. l (T ) 6= 0 for every proper (respectively maximal) right ideal T of R.

4. rl (T ) = T for every maximal right ideal T of R.

5. E (RR) is a cogenerator.

Proof. (1) =⇒ (2). Let M be a finitely generated right R-module. Then M has a maximal

submodule N and M/N ↪→ R. Thus hom (M,RR) 6= 0.

(2) =⇒ (3). Let L be a proper right ideal and 0 6= σ ∈ hom (R/T,R). Then σ (1 + T ) =

a 6= 0 and a ∈ l (T ).

(3) =⇒ (4). If T is a maximal right ideal, we have T ⊆ rl (T ) 6= R and this means that

T = rl (T ).

(4) =⇒ (5). Let M be a simple right R-module. Then M ∼= R/T where T is a maximal

right ideal of R. Let 0 6= a ∈ l (T ). Then γ : R/T −→ R is well defined by γ (r + T ) = ar.

Since T ⊆ r (a) 6= R, we have T = r (a), which shows that γ is monic. ThusM ↪→ R ⊆ E (R).

Therefore E (R) is a cogenerator by Proposition 1.2.27.

(5) =⇒ (1). If KR is simple let σ : K −→ E (R) be monic. Then σ (K) ∩R 6= 0 because

R ⊆ess E (R), so σ (K) ⊆ R because σ (K) is simple.

Corollary 1.2.31. A right selfinjective ring R is right Kasch if and only if rl (T ) = T

for every (maximal) right ideal T of R.

Lemma 1.2.32.( Nakayama’s Lemma) If MR is finitely generated, then:

1. If MJ = M then M = 0.

2. MJ ⊆sm M .

Definition 1.2.33. A ring R is called semiperfect if R/J is semisimple and idempotents

lift modulo J . R is called semiprimary if it is semiperfect and J is nilpotent. An idempotent

e in a ring R is called a local idempotent if eRe is a local ring.

A right R-module MR has a projective cover if there is an epimorphism α : P −→ M

where P is projective and ker (α) is small in P .

Theorem 1.2.34. For a ring R the following conditions are equivalent:

1. R is semiperfect.

13



2. Every finitely generated right R-module has a projective cover. That is: if M is a

finitely generated right R-module, there is an exact sequence 0 −→ K −→ P −→ M −→ 0

where P is projective, and K is small of P .

3. Every principal right R-module has a projective cover.

4. Every simple right R-module has a projective cover.

5. R is I-finite and primitive idempotents in R are local.

6. 1 = e1 + e2 + .......+ en where the ei are local, orthogonal idempotents.

Lemma 1.2.35. Suppose that R is a semiperfect ring in which Sl ⊆ess RR. Then R is

left Kasch.

Lemma 1.2.36. Assume that R is right self-injective, semiperfect ring with Sr ⊆ess RR.

Then R is right and left Kasch.

Definition 1.2.37. A ring R is called left perfect if every left R-module has a projective

cover. For example, semiprimary and right artinian rings are left and right perfect. (cf, [28])

Theorem 1.2.38. The following statements are equivalent:

1. R is left perfect.

2. R has the DCC on principal right ideals.

3. R has the DCC on finitely generated right ideals.

4. Every left R-module has the ACC on cyclic submodules.

5. Every nonzero right R-module has a minimal submodule, and R has no infinite set of

orthogonal idempotents.

Recall that a ring R is called a dual ring if rl (T ) = T for all right ideals T , and lr (L) = L

for all left ideals L. (cf, [25])

Theorem 1.2.39. The following statements are equivalent for a ring R :

1. R is quasi-Frobenius.

2. R is right or left artinian, right or left self-injective ring.

3. R is right or left noetherian, right or left self-injective ring.

4. R has ACC on right or left annihilators and R is right or left self-injective.

5. R is right or left noetherian and a dual ring.

Proof. (1) =⇒ (2) =⇒ (3) =⇒ (4). are obvious.

(4) =⇒ (5). We may assume that R is right selfinjective. Now we have two cases:

Case 1. R has ACC on left annihilators.
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