SEISMIC BEHAVIOR AND REPAIR OF STEEL FIBER REINFORCED CONCRETE BRIDGE COLUMNS

By
ABDEL-RAHMAN MOHAMED NAGUIB ABDEL-RAHMAN

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
STRUCTURAL ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2017
SEISMIC BEHAVIOR AND REPAIR OF STEEL FIBER REINFORCED CONCRETE BRIDGE COLUMNS

By

ABDEL-RAHMAN MOHAMED NAGUIB ABDEL-RAHMAN

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
STRUCTURAL ENGINEERING

Under the Supervision of

PROF. DR. NAYER AHMED EL-ESNAWY
Professor of Structural Analysis and Mechanics
Structural Engineering Department
Faculty of Engineering, Cairo University

PROF. DR. AHMED MAHMOUD SALEH
Professor of Concrete Structures
Structural Engineering Department
Faculty of Engineering, Cairo University

PROF. DR. WALID ADEL-LATIF ATTIA
Professor of Structural Analysis and Mechanics
Structural Engineering Department
Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2017
SEISMIC BEHAVIOR AND REPAIR OF STEEL FIBER REINFORCED CONCRETE BRIDGE COLUMNS

By

ABDEL-RAHMAN MOHAMED NAGUIB ABDEL-RAHMAN

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
STRUCTURAL ENGINEERING

Approved by the
Examinining Committee:

Prof. Dr. Nayer Ahmed El-Esnawy, Member

Prof. Dr. Ahmed Mahmoud Saleh, Member

Prof. Dr. Walid Abdel-Latif Attia, Thesis Main Advisor

Prof. Dr. Ahmed Hassan Ahmed Amer, Internal Examiner

Prof. Dr. Yehia Mohamed Abd El-Magid Mohamed, External Examiner
Professor of concrete structures, Reinforced Concrete Research Institute, Housing and Building National Research Center, Giza, Egypt

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2017
Title of Thesis:

“SEISMIC BEHAVIOR AND REPAIR OF STEEL FIBER REINFORCED CONCRETE BRIDGE COLUMNS”

Key Words:
(Steel fibers; Hysteretic behavior; Bridge columns; Ductility; Quasi-static tests; Seismic demands; Repair; Carbon fibers)

Summary:

The study explores the efficiency of using steel fiber reinforced concrete (SFRC) in bridge columns which resisting earthquakes. This was achieved by investigating the hysteretic behavior of scaled bridge columns via quasi-static tests of repeated lateral loads in presence of axial compressive force. Curves for estimating some seismic demands were constructed when using SFRC in bridge columns. The repair of seismic damage was studied on some of the previously tested samples using carbon fibers. Results showed the benefit of using steel fibers in reinforced concrete.
ACKNOWLEDGEMENTS

The author wishes to express his sincere appreciation and recognition to Prof. Dr. Nayer A. El-Esnawy, Professor of Structural Analysis and Mechanics, Faculty of Engineering, Cairo University, for his technical supervision and guidance, planning and continuous encouragement during the course of this research.

My sincere appreciation and recognition to my professors Prof. Dr. Walid Abdel-Latif Attia and Prof. Dr. Ahmed Mahmoud Saleh, Professors of Structural Engineering, Faculty of Engineering, Cairo University, for their technical supervision, guidance, and continuous support.

Acknowledgement is also to Prof. Dr. Yehia Mohamed Abd El-Magid, Professor of concrete structures and the head of the reinforced concrete laboratory at the housing and building national research center (HBRC), for his great assistance and effort during the experimental program.

Sincere thanks to Prof. Athol J. Carr, Professor Emeritus, Department of Civil and Natural Resources Engineering, University of Canterbury, Christchurch, New Zealand, for providing me with the trial version of the RUAUMOKO suite software package.

Deepest appreciation for my parents and their continuous encouragement, and my dear wife for her patience, endurance and continuous encouragement until the completion of this research work.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... i

TABLE OF CONTENTS .. ii

LIST OF TABLES .. vii

LIST OF FIGURES .. ix

NOMENCLATURE .. xix

ABSTRACT ... xxi

CHAPTER 1: INTRODUCTION .. 1

 1.1 Motivation .. 1

 1.2 Objectives .. 3

 1.3 Overview .. 3

CHAPTER 2: LITERATURE REVIEW .. 6

 2.1 Introduction .. 6

 2.2 Behavior of Reinforced Concrete Columns Subjected to Reversed Cyclic Lateral Load and Axial Load .. 6

 2.2.1 Behavior of short columns ... 6

 2.2.2 Behavior of slender columns .. 7

 2.2.3 Behavior of RC columns under cyclic loading in literature ... 7

 2.2.4 Behavior of repaired RC columns under cyclic loading in literature .. 8

 2.3 Laboratory Simulation of Earthquake Loading ... 9

 2.4 Hysteretic Modeling of Reinforced Concrete Elements .. 10

 2.4.1 Primary curve ... 10

 2.4.2 Hysteresis features ... 10

 2.5 Seismic Demands in ECP-201 .. 11

 2.6 Steel Fiber Concrete in literature .. 13

 2.6.1 Mechanical properties of SFC ... 14

 2.6.2 Flexural behavior of SFC ... 15

 2.6.3 Shear behavior of SFC ... 16
2.6.4 Torsional behavior of SFC ... 17
2.6.5 SFC subjected to impact .. 17
2.6.6 Behavior of SFC under seismic loading .. 17
2.6.7 Effect of temperature on SFC .. 18
2.6.8 Steel fibre pull-out ... 18
2.6.9 Acoustic emission behavior of SFC .. 19
2.6.10 Corrosion of SFC ... 19
2.6.11 Effect of fiber distribution characteristics in SFC 19
2.6.12 Improving the fabrication of SFC .. 20
2.6.13 Optimization of SFC ... 20
2.6.14 Analysis and modeling of SFC ... 20
2.6.15 Applications of SFC .. 21

CHAPTER 3: EXPERIMENTAL WORK ... 29
3.1 Introduction ... 29
3.2 Details of Test Program .. 29
3.2.1 Mechanical properties of SFRC ... 30
3.2.2 Cyclic loading of modeled bridge columns 31
3.2.3 Cyclic loading of repaired bridge columns 32
3.3 Materials .. 32
3.4 Reaction Frames and Test Setup ... 33
3.4.1 Reaction frames .. 33
3.4.2 Reversed cyclic lateral displacement with constant axial load test 34
3.5 Measurements and Loading Control System ... 34
3.5.1 Control system .. 34
3.6 Test Setup .. 36
3.7 Testing Procedure .. 37

CHAPTER 4: EXPERIMENTAL RESULTS .. 52
4.1 Introduction .. 52
4.2 Tests of Mechanical Properties of Steel Fiber Concrete 52
 4.2.1 Compressive strength ... 52
 4.2.2 Tensile strength .. 52
 4.2.3 Modulus of Rapture .. 53
4.3 Behavior of Cyclic Loaded Bridge Column Tested Models 53
 4.3.1 Modes of failure ... 53
 4.3.2 Load–displacement relationships and strength evaluation 53
 4.3.3 Reinforcement strain .. 54
 4.3.4 Strength envelope ... 54
 4.3.5 Variation of axial load .. 54
4.4 Yield, Failure Displacement, Displacement Ductility Factor and Accumulated
 Displacement Ductility ... 56
4.5 Energy Dissipation Characteristics .. 57
4.6 Stiffness Analysis .. 59

CHAPTER 5: NUMERICAL ANALYSIS OF TESTED MODELS 92
5.1 Introduction .. 92
5.2 Purpose of the Numerical Investigation ... 92
5.3 Program Theory and Background .. 92
 5.3.1 Basic concept of IDARC .. 93
 5.3.2 Types of analysis .. 94
5.4 Nonlinear Properties of Materials .. 96
 5.4.1 Steel fiber concrete ... 97
 5.4.2 Reinforcement properties ... 99
5.5 Hysteretic Rule .. 100
 5.5.1 Polygonal hysteretic model .. 100
 5.5.2 Smooth hysteretic model ... 101
5.6 Quasi-Static Displacement Analysis of Tested Specimens 101
5.7 Nonlinear Dynamic Analysis of Tested Specimens 102
5.8 Elastic Response Spectrum of ECP-201 .. 103
5.9 Artificial Earthquake Records ... 104
5.10 Evaluation of Specimens under Different Excitations 105

CHAPTER 6: PRACTICAL APPLICATIONS USING CALIBRATED MODELS OF SFRC BRIDGE COLUMNS ... 129
6.1 Introduction ... 129
6.2 Basic Concept of HYSTERES ... 130
6.3 Calibrated Models Using HYSTERES ... 130
6.4 Basic Concept of INSPECT .. 131
6.5 Spectral Displacement Curves for SFRC ... 131
6.6 Spectral Acceleration Curves for SFRC ... 132
6.7 Strength Reduction Factor Curves for SFRC .. 132
6.8 Proposed Design Curves for SFRC ... 132

CHAPTER 7: REPAIR OF SFRC BRIDGE COLUMNS 161
7.1 Introduction ... 161
7.2 Experimental Program ... 162
7.2.1 Material properties .. 163
7.2.2 Repair procedure .. 163
7.2.3 Test setup .. 164
7.2.4 Testing procedure .. 164
7.3 Experimental Results, Analysis and Discussion ... 165
7.3.1 Modes of failure .. 165
7.3.2 Load–displacement relationships and strength evaluation 165
7.3.3 Yield, failure displacement, displacement ductility factor and accumulated displacement ductility ... 166
7.3.4 Energy dissipation characteristics ... 167
7.3.5 Stiffness analysis ... 168

CHAPTER 8: SUMMARY AND CONCLUSIONS .. 177
8.1 Summary .. 177
8.2 Main Conclusions .. 178
8.3 Future Work .. 179

REFERENCES .. 180
LIST OF TABLES

Table 3.1: Details of test specimens of part one ... 30
Table 3.2: Details of test specimens of part two .. 32
Table 3.3: Proportions of concrete mixes for 1m³ .. 33
Table 4.1: Results of the 45 specimens concerning the first part 55
Table 4.2: The experimental results of tested specimens concerning the 2nd part 55
Table 4.3: Displacement ductility factor .. 57
Table 4.4: Total accumulated energy and the energy index of the specimens 58
Table 4.5: Lateral Stiffness at different lateral displacement levels 59
Table 5.1: Estimated parameters required for nonlinear analysis of SFC 98
Table 5.2: Estimated parameters required for IDARC .. 99
Table 5.3: Values of the SHM parameters for the tested specimens 102
Table 5.4: Four natural earthquakes for NLDA ... 103
Table 5.5: Description of overall damage index ... 106
Table 5.6: Inelastic Seismic Demands of El-Centro 0.15g .. 106
Table 5.7: Inelastic Seismic Demands of Aqaba 0.15g ... 107
Table 5.8: Inelastic Seismic Demands of Loma Prieta 0.15g 107
Table 5.9: Inelastic Seismic Demands of Northridge 0.15g 107
Table 5.10: Inelastic Seismic Demands of SimA 0.15g ... 108
Table 5.11: Inelastic Seismic Demands of SimA 0.30g ... 108
Table 5.12: Inelastic Seismic Demands of SimB 0.15g ... 108
Table 5.13: Inelastic Seismic Demands of SimB 0.30g ... 109
Table 5.14: Inelastic Seismic Demands of SimC 0.15g ... 109
Table 5.15: Inelastic Seismic Demands of SimC 0.30g ... 109
Table 6.1: Calibrated hysteretic parameters for HYSTERES software 131
Table 7.1: The experimental results of original and repaired specimens 166
Table 7.2: Displacement ductility factor ... 167
Table 7.3: Accumulated energy at different lateral displacement levels 167
Table 7.4: Total accumulated energy and the energy index of the specimens 168
Table 7.5: Lateral Stiffness at different lateral displacement levels 168
LIST OF FIGURES

Fig. 2.1: Lateral force versus lateral drift of the tested specimens by Saleh et al. [159]22

Fig. 2.2: Test setup by Mahdy [126] ...23

Fig. 2.3: Lateral force versus lateral drift of the tested specimens by Mahdy [126]. 23

Fig. 2.4: Test setup by El- Maadawy [70] ..24

Fig. 2.5: Lateral force versus lateral drift of the tested specimens by El- Maadawy [70]; (a) skew angle of 20°, (b) skew angle of 70° ... 24

Fig. 2.6: Test Details; a) Test setup, b) Loading history, c) Double curvature modeling by Lee [115] ...25

Fig. 2.7: Lateral force versus lateral drift of the tested specimens by Lee [115]........ 26

Fig. 2.8: Test setup by Li et al. [120] ...27

Fig. 2.9: Lateral force versus lateral drift of the tested specimens by Li et al. [120] ... 27

Fig. 2.10: Test setup by He et al. [90] ... 28

Fig. 2.11: Lateral force versus lateral drift of the tested specimens by He et al. [90] ... 28

Fig. 3.1: Used Materials; a) Steel fiber type, b) Steel fiber, c) Portland cement,
 d) Sand, e) Dolomite, f) Super plasticizer type .. 38

Fig. 3.2: Mixing process; a) Dry mixing, b) Adding water & Super plasticizer, c) Fiber distributing sieve, d) Adding steel fiber to mix39

Fig. 3.3: Testing of fresh concrete; a) Slump Test, b) Slump failure shape, c) Slump value, d) Preparation of Density test, e) Fresh concrete density test, f) compaction of specimens .. 40
Fig. 3.4: Specimens preparation and testing; a) Samples after curing, b) Cubes during testing, c) Cylinder preparation for testing, d) Cylinder during testing, e) Prism preparation for testing, f) Prism during testing .. 41

Fig. 3.5: Reinforcement details of specimens ... 42

Fig. 3.6: Location of strain gages .. 43

Fig. 3.7: Interaction Diagram without any safety factors for the tested specimens 43

Fig. 3.8: Main testing reaction frame of HBRC; the A-frames 44

Fig. 3.9: Preparation of the reinforcement; a) Reinforcing steel, b) Lower part of reinforcing cage, c) Wooden form work with sliding lock, d) Lowering R.F.T. cage into formwork, e) Ready for casting concrete, f) Pipe for fixation to ground purposes .. 45

Fig. 3.10: Preparing and casting of columns; a) Testing of strain gages, b) Casting of column, c) Compacting concrete with vibrator, d) Columns curing, e) Compacting of samples, f) Quality assurance samples ... 46

Fig. 3.11: Preparation of test setup; a) Fixation rods, b) Lowering specimen, c) Adjusting level of horizontal jack, d) Adjust location of vertical jack, e) Connect Vertical jack to specimen, f) Contact pressure plate on top, g) Connect horizontal jack to specimen, h) Contact pressure plates on sides 47

Fig. 3.12: Attaching measurement system, a) LVDT fixing at top & mid height, b) Vertical and inclined LVDT fixing, c) Vertical concrete strain gage fixing, d) Complete view of plastic hinge zone, e) Connecting wires to actuator, f) Hydraulic pumps for horizontal & vertical loads ... 48

Fig. 3.13: Complete view of test setup .. 49

Fig. 3.14: Schematic of test setup .. 50

Fig. 3.15: Loading scenario of test ... 51
Fig. 4.1: Mode of failure for specimens, a) PC cube after testing, b) SFC cube after testing, c) PC cylinder after testing, d) SFC cylinder after testing, e) PC prism after testing, f) SFC prism after testing .. 60

Fig. 4.2: Specimen S1, a) During testing, b) Hysteresis loops, c) Crack distribution at north side, d) Crack distribution at south side, e) Damage at north side, f) Damage at south side .. 61

Fig. 4.3: Specimen S2, a) During testing, b) Hysteresis loops, c) Crack distribution at north side, d) Crack distribution at south side, e) Damage at north side, f) Damage at south side .. 62

Fig. 4.4: Specimen S3, a) During testing, b) Hysteresis loops, c) Crack distribution at north side, d) Crack distribution at south side, e) Damage at north side, f) Damage at south side .. 63

Fig. 4.5: Specimen S4, a) During testing, b) Hysteresis loops, c) Crack distribution at north side, d) Crack distribution at south side, e) Damage at north side, f) Damage at south side .. 64

Fig. 4.6: Specimen S5, a) During testing, b) Hysteresis loops, c) Crack distribution at north side, d) Crack distribution at south side, e) Damage at north side, f) Damage at south side .. 65

Fig. 4.7: Specimen S6, a) During testing, b) Hysteresis loops, c) Crack distribution at north side, d) Crack distribution at south side, e) Damage at north side, f) Damage at south side .. 66

Fig. 4.8: Specimen S7, a) During testing, b) Hysteresis loops, c) Crack distribution at north side, d) Crack distribution at south side, e) Damage at north side, f) Damage at south side .. 67

Fig. 4.9: Specimen S8, a) During testing, b) Hysteresis loops, c) Crack distribution at north side, d) Crack distribution at south side, e) Damage at north side, f) Damage at south side .. 68

Fig. 4.10: Lateral force versus lateral drift for S1 at top .. 69