

Current Status of Ureteroscopic Management of stones at Urology department- Kasr El-Aini hospital

Cairo University

This thesis is submitted for partial fulfillment of master degree in Urology

Bу

Abdel-Karim Ali Mansour Ghaleb M.B.B.Ch.

Supervised by

Prof.Dr. Omar M. Abdel-Razzak Professor of Urology Faculty of Medicine – Cairo University

Prof. Dr. Khaled Mursi Hammoud Professor of Urology Faculty of Medicine – Cairo University

Dr. Mohammed El-Sheemy Lecturer of Urology Faculty of Medicine – Cairo University

Faculty of Medicine

Cairo University

(2012)

Acknowledgement

First and foremost, thanks to **ALLAH**, the most gracious, the most merciful.

I would like to express my sincere gratitude to **Prof. Dr. Omar M. Abdel-Razzak Professor of Urology**, faculty of medicine, Cairo University, who honored me by his supervision, continuous help, valuable encouragement and continuous guidance.

I am so much obligated to **Prof.Dr. Khaled Mursi Hammoud Professor of Urology,** faculty of medicine, Cairo University for his continuous guidance and valuable advices throughout this work. I am much grateful for his great help and support throughout this work.

I owe my deepest gratitude to **Dr. Mohammed El-Sheemy**, Lecturer of Urology Faculty of Medicine, Cairo University for valuable guidance, support, advice and for his effort in the presentation of this work.

Special thanks to all teaching staff, and my colleagues in department for their continuous encouragement and respect.

Dedication

To my family, especially my Parents for their encouragement, patience and assistance to me over years. And to my beloved wife, to my children Waseem and Dina.

List of Contents

Introduction	1
Aim of the study	3
Review of the literature	4
Patients and methods	54
Results	73
Discussion	114
Conclusion and recommendation	125
Summary	128
References	132
Arabic summary	

List of Abbreviations

AUA	American Urological Association
URS	Ureterorenoscopy
PCN	Percutaneous nephrostomy
CBC	Complete blood picture
BT	Bleeding time
BPH	Benign prostatic hyperplasia
PTT	partial thromboplastin time
U/S	Abdominal ultrasonography
UO	ureteral orifice
KUB	Plain X-ray
IVP	Intravenous Pyelography
C.T	Computed Tomography
NCSCT	Non-Contrast Spiral Computed Tomography
Fr	French
Fr F_URS	French Flexible ureteroscopy
F_URS	Flexible ureteroscopy
F_URS SR_URS.	Flexible ureteroscopy Semirigid ureteroscopy
F_URS SR_URS. GW	Flexible ureteroscopy Semirigid ureteroscopy Guidewires
F_URS SR_URS. GW PTFE	Flexible ureteroscopy Semirigid ureteroscopy Guidewires polytetrafluoroethylene
F_URS SR_URS. GW PTFE SGW	Flexible ureteroscopy Semirigid ureteroscopy Guidewires polytetrafluoroethylene Straight Guidewire
F_URS SR_URS. GW PTFE SGW HN	Flexible ureteroscopy Semirigid ureteroscopy Guidewires polytetrafluoroethylene Straight Guidewire Hydrophilic Nitinol
F_URS SR_URS. GW PTFE SGW HN PL	Flexible ureteroscopy Semirigid ureteroscopy Guidewires polytetrafluoroethylene Straight Guidewire Hydrophilic Nitinol Pneumatic lithotripsy

PUJ	Uretropelvic Junction
ESWL	Extracorporeal Shockwave Lithotripsy
AUA	American Urological Association
DFU	Digital Flexible Ureterorenoscope
UUT	Upper Urinary Tract
UVJ	Ureterovesical junction
Rt	Right
Lt	Lift
1 st	First
2^{nd}	Second
I.V	Intravenous
I.M	Intramuscular
Y	Year

List of Figures

Figure No.	Title	Page
1	Parts of the ureter	5
2	Normal ureterovesical junction and trigone	10
3	Radiologic anatomy of the ureter	13
4	Histological structure of the ureter	16
5	Arterial supply of the ureter	19
6	Modern generation flexible ureterorenoscope	22
7	Maximal tip deflection of standard flexible ureterorenoscope	23
8	Rigid Ureteroscope	26
9	Modern semirigid ureteroscope	27
10	ureteral catheters	28
11	Facial Dilators	30
12	ureteral balloon dilator	31
13	Ureteromat	32
14	Ureteroscopic baskets	33
15	grasping forceps	33
16	Swiss lithoclast	34
17	Ho: YAG laser lithotripsy generator	35
18	moderate hydronephrosis with PUJ stone	57
19	The same patient with ureteric stent postoperatively	57
20 A	KUB bilateral lower ureteric stones	58
20 B	Intravenous pyelography show bilateral hydroureteronephrosis	58
20 C	A KUB post ureteroscopy with right DJ&left ureteric stent	58
20 D	Ultrasonography show sever right hydronephrosis and Hydroureter	58
21	KUB show right lower ureteric stone	59
22	KUB post right laser ureteroscopy with right DJ stent	59
23	spiral CT show right lower ureteric and left upper ureteric stone	59

Figure No.	Title	Page
24	KUB post right laser URS with DJ fixation	60
25	Adult cystoscopic sheath	60
26	pediatric cystoscopic sheath	60
27	long semirigid ureteroscope	61
28	Long semirigid ureteroscope	61
29	pediatric semirigid short ureteroscope	62
30	pediatric semirigid long ureteroscope	62
31	"Flex-x" "Karl Storz"ureteroscope	63
32	Facial diltors	63
33	Ballon dilators	64
34	Grasping forces	64
35	Dormia basket	64
36	Swiss Lithoclast 2	65
37	Swiss Lithoclast 2 probe	65
38	lithotripter model Calcusplit	65
39	pediatric laser lithotripsy (SphniX)	66
40	Laser lithotripsy (Versa Pulse Power Suite)	67
41	Dorsal lithotomy position	68
42	Portable a C-arm fluoroscopy	68
43	Retrograde in patien with right lower ureteric stone	69
44	Sex distribution of the studied cases	74
45	Side of stone	77
46	Site of the stone	78
47	Number of stones	79
48	Radiological appearance of the stone	79
49	Distribution of cases according to the longest diameter of the stone	80
50	Urine analysis findings	82

Figure No.	Title	Page
51	Distribution of cases according to the method of lithotripsy	85
52	Age of the patient	85
53	Type of aneasthesia	86
54	outcome of dilatation according to age	88
55	Type of ureteroscopes	89
56	Types of ureteral stents	92
57	Equipment failure according to stone size	95
58	Equipment failure according to site of stone	96
59	Equipment failure according to broken forceps	97
60	Equipment failure according to deflection failure	97
61	Access failure complication according to age of the patient	99
62	Access failure complication according to site of stone	100
63	postoperative hospital stay	102
64	Complications of ureteroscopy	103
65	the outcome after 1 st attempt	109
66	the outcome after 2 nd attempt	109
67	Failure rates in relation to age of the age of patient	111
68	Failure rates in relation to stone size	112
69	Failure rates in relation to site of stone	113
70	Failure rates in relation to 1ry or 2ry attempt	113

List of Table

Table No.	Title	Page
1	Age distribution	73
2	Sex distribution	73
3	presenting symptoms	75
4	History of recurrence	75
5	Types of radiological investigation used	76
6	Side of the stone	76
7	Site of the stone	77
8	Number of the stones	78
9	Radiological appearance of the stone	79
10	The longest diameter of the stone	80
11	The state of the upper urinary tract (UUT) before URS	81
12	Urine analysis findings	81
13	The mean operative time according to site of the stone	83
14	The mean operative time according to size of stone	84
15	The mean operative time according to method of lithotripsy	84
16	The mean operative time according to the age	85
17	Type of anesthesia used	86
18	failed dilatation according to age	87
19	The varieties of ureteral dilators	88
20	Type of ureteroscopes used	89
21	different modalities of stone extraction and fragmentation	91
22	Types of ureteral stents	92
23	Stone migration according to the age of patients	93
24	Migration complication according to use of fragmentation	93
25	Migration complication according to type of the lithotripsy	94
26	Migration complication according to stone size	94

Table No.	Title	Page
27	Migration complication according to site of stone	94
28	Migration complication according to type of the ureteroscope	94
29	Migration complication according to level of experience	95
30	Equipment failure according to age of the patient	95
31	Equipment failure according to stone size	95
32	Equipment failure according to site of stone	96
33	Equipment failure according to level of experience	96
34	Equipment failure according to broken forceps	97
35	Equipment failure according to deflection failure	97
36	Equipment failure according to broken fiber	98
37	Equipment failure according to cause	98
38	Access failure complication according to age of the patient	99
39	Access failure complication according to type of the ureteroscope	100
40	Access failure complication according to site of stone	100
41	Access failure complication according to level of experience	101
42	Access failure according to 1ry or 2ry attempt	101
43	postoperative hospital stay	101
44	Complications (intraoperative, early postoperative)	102
45	Complications according to age of the patient	104
46	Complications according to type of the ureteroscope	105
47	Complications according to type of the lithotripsy	105
48	Complications according to type of fragmentation and stone extraction	106
49	Complications according to stone size	106
50	Complications according to site of stone	107
51	Complications according to level of experience	108
52	Mucosal complications and extravasation according to 1ry or 2ry attempt	108

Table No.	Title	Page
53	stone clearance after ureteroscopy	109
54	Success and failure rates in relation with the site of stone	110
55	Failure rates in relation to the age of patient	110
56	Failure rates in relation to type of the ureteroscope	111
57	Failure rates in relation to type of the lithotripsy	111
58	Failure rates in relation to stone size	112
59	Failure rates in relation to site of stone	113
60	Failure rates in relation to level of experience	113
61	Failure rates in relation to 1ry or 2ry attempt	113

Abstract

This prospective study aimed to evaluate the current status of ureteroscopic management of stones in the term of efficacy, safety, operative procedure and early postoperative complications.Ninty five ureteroscopes were performed on 90 patients using pneumatic or laser lithotripsy, as well as both semirigid and flexible ureteroscopes.

The overall success rate was 83.2% after 2^{nd} session and was 94.7%, 76.9%, 70%, 50% and 66.7% in the lower, middle, upper ureter, renal pelvis and lower calyx respectively. The failure rate was 16.8% after 2^{nd} session and was due to stone migration in 7 (7.4%) cases, access failure in 7 cases (7.4%) and equipment failure in 5 patients (5.3%). The results of flexible ureteroscopy showed that more experience must be conducted to younger urologists to avoid complications especially equipment failure during the management of lower calyceal stones. The extravasation was significantly higher among flexible ureteroscopy group (50%), in cases with stone size 15.1-20 mm (33.3 %), in cases with lower calyceal (33.3%) and renal pelvic stones (16.75%).Ten cases with upper ureteric stone were successfully treated using semirigid URS with 2 cases stone migration. The operative time was significantly longer in cases using laser lithotripsy (89 min) as compared to pneumatic lithotripsy (77 min) but without any difference in success or complications.

Key words:Urinary tract stones, ureteroscopy, intracorporeal lithotripsy, complications.

Introduction

The trend in medicine continues to be toward non operative or minimally invasive endoscopic procedures replace open surgical procedures. As a part of this increasing trend toward non operative therapy, there has been a steady increase of the number of endoscopic procedures performed within the upper urinary tract (**Huffman, 1998**)

Advances in endoscopic technology have led to a revolution in the management of upper tract pathology. The development of semirigid, fiberoptic, and actively deflectable, flexible ureteroscopes has allowed urologists to gain access to all areas of the collecting system. (Leone et al, 2010).

Recently, Gyrus ACMI introduced the first totally digital flexible ureterorenoscope (DFU) system. The major advantage of this device is imaging: Better resolution, fidelity, and quality. Contrary to conventional flexible URS, image resolution is not delivered by fibers; also, a camera at the tip of the ureterorenoscope provides fully digital image capture giving an 80-degree field of view, automatic image focus, and zoom up to 150%, **Binbay et al, (2010).**

Duration of pediatric ureteroscopy should be short, and warm irrigation fluids should be used to avoid complications, and there is no need for dilation of the intramural ureter before each ureteroscopy. When dilation is required it should be done only to the smallest size that will allow introduction of the ureteroscope. Some reports suggested vesicoureteral reflux (11% to 17%) as a late complication when a large-caliber ureteroscope is used. **Basiri et al (2008).**

1