IOL Master Optical Biometry versus Conventional Ultrasonic Biometry in Intraocular Lens Power Calculations in Highly Myopic versus Emmetropic Eyes

Thesis submitted for partial fulfillment of master degree in Ophthalmology

By

Mina Nasry Gad Elkareem

M.B.B.Ch

Faculty of Medicine - Cairo University

Under supervision of

Prof. Dr. Mervat Salah Mourad

Professor of Ophthalmology

Faculty of Medicine – Ain shams university

Asst.Prof. Dr. Rafaat Ali Elsayd Rehan

Assistant Professor of Ophthalmology

Faculty of Medicine-Ain shams university

Dr. Mouamen Mohammed Mustafa

Lecturer of Ophthalmology

Faculty of Medicine – Ain shams University

Faculty of Medicine

Ain shams University

2017
Acknowledgments

First of all, I must express my gratitude to GOD for helping me not only with this work but throughout my life.

I am greatly honored to express my gratitude and sincere appreciation to Professor, Dr. Mervat Salah Mourad, Professor of Ophthalmology, Ain Shams University for her professional help, great care, and unlimited generosity in time and effort.

I am also grateful to Dr. Rafaat Ali Elsayd Rehan, Assistant Professor of Ophthalmology, Ain Shams University for his great help, support, and guidance in preparing this thesis.

I am also grateful to Dr. Mouamen Mohammed Mustafa, lecturer of Ophthalmology, Ain Shams University who helped me a lot throughout this work, by his support, patience, guidance, practical comments and encouragement.

I would like to express my special thanks to my family, all my colleagues, for their valuable support and the patients who participated in this work.
List of contents

- List of abbreviations .. II
- List of figures .. III
- List of tables .. V
- Aim of the work ... 1
- Review of literature ... 2
 - Introduction .. 2
 - A- scan ultrasound ... 5
 - IOL master .. 11
- Methodology ... 19
- Results ... 31
- Discussion ... 58
- Conclusion ... 55
- Summary .. 56
- References ... 58
- Arabic summary ... 61
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>Axial Length</td>
</tr>
<tr>
<td>ACD</td>
<td>Anterior Chamber Depth</td>
</tr>
<tr>
<td>AUS</td>
<td>Applanation Ultrasound</td>
</tr>
<tr>
<td>A-S</td>
<td>A – Scan</td>
</tr>
<tr>
<td>AXL</td>
<td>Axial Length</td>
</tr>
<tr>
<td>BCVA</td>
<td>Best Corrected Visual Acuity</td>
</tr>
<tr>
<td>CCT</td>
<td>Central corneal thickness</td>
</tr>
<tr>
<td>ELP</td>
<td>Estimated Lens Position</td>
</tr>
<tr>
<td>ILM</td>
<td>Inner Limiting Membrane</td>
</tr>
<tr>
<td>IOL</td>
<td>Intraocular Lens</td>
</tr>
<tr>
<td>IOL M</td>
<td>IOL Master</td>
</tr>
<tr>
<td>IOP</td>
<td>Intraocular pressure</td>
</tr>
<tr>
<td>Kav</td>
<td>Average K reading</td>
</tr>
<tr>
<td>LT</td>
<td>Lens thickness</td>
</tr>
<tr>
<td>MAE</td>
<td>Mean Absolute Error</td>
</tr>
<tr>
<td>MNE</td>
<td>Mean numerical error</td>
</tr>
<tr>
<td>NE</td>
<td>Numerical Error</td>
</tr>
<tr>
<td>PCI</td>
<td>Partial Coherence Interferometry</td>
</tr>
<tr>
<td>PSC</td>
<td>Posterior Subcapsular Cataract</td>
</tr>
<tr>
<td>RPE</td>
<td>Retinal pigment epithelium</td>
</tr>
<tr>
<td>SE</td>
<td>Spherical Equivalent</td>
</tr>
<tr>
<td>SS-OCT</td>
<td>Swept source OCT(optical coherence tomography)</td>
</tr>
<tr>
<td>WTW</td>
<td>White to white</td>
</tr>
</tbody>
</table>
List of figures

Figure 1: Typical A-scan printout for axial length measurement .. 7

Figure 2: Contact axial echogram of a case of cataract .. 8

Figure 3: Affection of the spike height by the angle of the sound wave hitting the interface by the probe . 9

Figure 4: Affection of the spike height by regularity of the interface .. 9

Figure 5: The zeiss IOL master ... 12

Figure 6: An example of a typical SS-OCT biometry optical B-scan .. 13

Figure 7: Poor fixation (on the left); Correct fixation (on the right) ... 15

Figure 8: Comparison of the biometry device scan (A) and the SD-OCT scan in inverted color (B) for a macular hole .. 15

Figure 9: Example for A-Scan IOL calculation print out ... 21

Figure 10: Correct detection of the ocular interfaces (cornea, lens, and retina) in a SS-OCT biometry optical B-scan .. 22

Figure 11: Coarse alignment of IOL master .. 23

Figure 12: Fine alignment of IOL master .. 24

Figure 13: Fine alignment for retinal scan .. 24

Figure 14: Quality check .. 25

Figure 15: Analysis .. 26

Figure 16: IOL calculation paper ... 27

Figure 17: Biometric values paper ... 28
Figure 18: Pie chart representing Different age groups percentage within the study group..32

Figure 19: Pie chart representing Gender distribution in study group..33

Figure 20: Pie chart representing types of cataract in the study group..34

Figure 21: Comparison between axial lengths (AXL) measured by IOL master and measured by A-scan in the emmetropic group..37

Figure 22: Comparison between mean absolute errors (MAE) measured by IOL master and A-scan.........................44

Figure 23: Comparison between mean absolute errors (MAE) measured by IOL master and A-scan in the emmetropic group..46
List of tables

Table 1 : IOL calculation formulae...18
Table 2 : Age distribution in the study group..31
Table 3 : Gender distribution in the study group..32
Table 4 : Types of cataract in the study group..33
Table 5 : Comparison between K values (KAV) measured by IOL master and measured by A-scan...34
Table 6 : Difference between K values (KAV) measured by IOL master and measured by A-scan...35
Table 7 : Comparison between axial lengths (AXL) measured by IOL master and measured by A-scan...35
Table 8 : Mean difference between axial lengths (AXL) measured by IOL master and measured by A-scan...36
Table 9 : Comparison between axial lengths (AXL) measured by IOL master and measured by A-scan in emmetropic group ...36
Table 10 : Mean difference between axial lengths (AXL) measured by IOL master and measured by A-scan in emmetropic group ...37
Table 11 : Comparison between axial lengths (AXL) measured by IOL master and measured by A-scan in high myopic group ...38
Table 12 : Mean difference between axial lengths (AXL) measured by IOL master and measured by A-scan in myopic group ...38
Table 13 : Comparison between powers measured by IOL master and measured by A-scan...39
Table 14 : Mean difference between powers measured by IOL master and measured by A-scan...39
Table 15 : Comparison between powers measured by IOL master and measured by A-scan in emmetropic group ...39
Table 16 : Mean difference between powers measured by IOL master and measured by A-scan in emmetropic group...40
Table 17 : Comparison between powers measured by IOL master and measured by A-scan in high myopic group...40
Table 18 : Mean difference between powers measured by IOL master and measured by A-scan in high myopic group...40
Table 19 : Comparison between predicted errors measured by IOL master and measured by A-scan...41
Table 20 : Mean difference between predicted errors measured by IOL master and measured by A-scan...41
Table 21 : Comparison between pre-operative spherical equivalent (SE) and measured SE after operation..42
Table 22 : Postoperative Best corrected visual acuity (BCVA)..42
Table 23 : Comparison between mean numerical errors (MNE) measured by IOL master and measured by A-scan...43
Table 24 : Difference between mean numerical errors (MNE) measured by IOL master and measured by A-scan...43
Table 25 : Comparison between mean absolute errors (MAE) measured by IOL master and measured by A-scan...44
Table 26: Difference between mean absolute errors (MAE) measured by IOL master and measured by A-scan.......................... 44

Table 27: Comparison between mean absolute errors (MAE) measured by IOL master and measured by A-scan in emmetropic group. ... 45

Table 28: Difference between mean absolute errors (MAE) measured by IOL master and measured by A-scan in emmetropic group. ... 45

Table 29: Comparison between mean absolute errors (MAE) measured by IOL master and measured by A-scan in high myopic group. ... 46

Table 30: Difference between mean absolute errors (MAE) measured by IOL master and measured by A-scan in high myopic group. ... 47

Table 31: Postoperative measured spherical equivalent. ... 47
Aim of the work

The aim of this work is to determine whether intraocular lens (IOL) power calculations for cataract surgery - as measured by postoperative refractive error - using IOL master are more accurate in improving postoperative outcomes than applanation ultrasonic biometry (AUS) in highly myopic versus emmetropic eyes.
Introduction

Cataract is the leading cause of preventable blindness worldwide. Cataract extraction with implantation of an intraocular lens (IOL) is the most frequently performed ophthalmic surgical procedure worldwide, and perhaps the most effective surgical procedure in all of medicine. However, accurate calculation of the IOL power for attaining the desired postoperative refraction remains a research issue. (Raymond et all, 2009).

Several factors affect the refractive outcome after cataract surgery, including axial length, keratometry, and lens formulas. Of these factors the preoperative axial length measurement is a key determinant in the choice of intra-ocular lens (IOL) power when performing cataract surgery (Raymond et all, 2009).

Preoperative error in axial length measurement is the most significant factor in IOL power miscalculation. A 1 mm error in AL measurement results in a refractive error of 2.35 D in a 23.5 mm eye. This refractive error declines to 1.75 D/mm in a 30mm eye but rises to 3.75 D/mm in a 20mm eye. This means that accuracy of AL measurement is more important in a short eye than in a long one (Qing-Hua Yang et all, 2014).

Historically, the most common technique used among biometrists for AL measurement is applanation ultrasonic biometry (AUS). Recently, partial coherence laser interferometry (PCLI) for AL measurements is preferred for IOL calculation (Raymond et all, 2009).
Ultrasonic biometry requires contact of a transducer with the eye either by direct contact in the applanation technique or indirect contact in the immersion one. Differences in AL between immersion and applanation reach up to 0.36 mm due to various amounts of pressure exerted on the eye during applanation, however applanation is widely used for biometry. Studies show that errors from AL measurement with ultrasonic biometry are responsible for 54% of the refractive errors after cataract surgery and IOL implantation. (Eleftheriadis, 2003)

Applanation ultrasonic technique can result in corneal epithelial injury, infection, patient discomfort and errors due to corneal indentation. It’s also confounded by certain clinical problems such as globe deformities, myopic staphyloma, and silicone oil tamponade. (Roessler et al, 2014)

Partial coherence laser interferometry (PCLI), which is based on the principle similar to that of the optical coherence tomography has been developed to overcome ultrasound limitation. This method doesn’t need contact with the patient so it has the advantage of giving the patient less discomfort and has a low observer error. (Moon et al, 2014)

When staphylomas are present in highly myopic eye, PCLI could be an advantage as it allows evaluation of the axial length along the visual axis. (Roessler et al, 2014)

In eyes with a 4+ nuclear sclerotic cataract or a white cataract, PCLI cannot get a reading. The patient has to be able to achieve fixation, and the light from the instrument has to be able to reach the fovea and return to the detector. The technology will not work
with cataracts that reduce the patient’s visual acuity to 3/60 to finger counting, i.e. about 5% to 10% of patients in a typical practice. In those patients, we must use the available back-up technology, which is ultrasound. (Holladay, 2009)

Since partial coherence laser interferometry (PCLI) relies on adequate foveal fixation, eyes with corneal scarring, posterior capsule plaques, eccentric fixation, and macular degenerations fail to obtain reliable results (Rajan et al., 2002).
The A-scan ultrasound

Sound is a vibratory disturbance within a liquid or solid that travels in a wave pattern. Sound is audible to the human ear when the sound frequency is between 20 hertz (Hz) and 20,000 Hz. To be considered ultrasound, sound waves must have a frequency more than 20,000 Hz (20 KHz), rendering them too high in frequency to be audible to the human ear. (Byrne & Green, 2002)

The principles of ocular ultrasound are the same as other applications of this technology. The sound waves that have a frequency greater than 20 kHz travel along the tissues and are reflected back to the transducer. When the sound waves return, a piezoelectric crystal in the transducer vibrates, resulting in electrical impulses that are translated into an image or other data. (Shlensky & Alexander, 2015)

Higher frequency waves have a lower tissue penetration capability than low frequency waves, but have better resolution. Most A-scan and B-scan ultrasound probes use extremely high frequency of approximately 10 million Hz (10 MHz) which is predesigned by the manufacturer. These high frequent waves allow for excellent resolution and restricted depth of penetration. (Byrne, 1995)

All waves including ultrasonic, have predictive behaviors based on the properties of the medium they travel through. Sound waves have a higher velocity when traveling through solids than through liquids. This is an important principle to understand because
the eye is composed of both. In A-scan biometry, the ultrasonic waves travel through the solid cornea, the liquid aqueous, the solid lens, the liquid vitreous, the solid retina, choroid, sclera, and then orbital tissue; therefore, it continually changes velocity. (Shlensky & Alexander, 2015)

The sound velocity through the cornea and the lens (average lens velocity for the cataract age group, ie, approximately 50-65 y) is 1641 meters/second (m/s), and the sound velocity through the aqueous and vitreous is 1532 m/s. The average velocity through the phakic eye is 1555 m/s, while it is 1532 m/s through the aphakic eye. The velocity through the pseudophakic eye is 1532 m/s plus the correction factor for the intraocular lens (IOL) material. (Hoffer et al, 1994)

Ultrasonic examinations of soft tissues use reflective systems analogous to those used in radar and sonar. This approach allows examination within a thin “slice” through tissue structures. In A-scan biometry, one thin parallel sound beam is emitted from the probe tip at a frequency of approximately 10 MHz, then reflected back to the probe tip as the sound beam strikes each interface. An interface is the junction between two media of different velocities and densities, which in the eye, includes the anterior corneal surface, the aqueous-anterior lens surface, the posterior lens capsule-anterior vitreous, the posterior vitreous-retinal surface, and the choroid-anterior scleral surface. (Coleman, 2005)

The echoes that are received back into the probe from each interface are converted by the biometer to spikes arising from a baseline. If the difference in the two media at each interface is great, the echo is strong and the displayed spike is high. If that difference is small, the echo is weak and the spike is short (eg, vitreous floaters, posterior vitreous