Guidelines for the selection of antimicrobial therapy in pediatrics

An Essay submitted for partial fulfillment of master degree in pediatrics

By

Saad Shawky Mohamed Sarhan (M.B., B.Ch.) (Cairo University)

Supervisors Prof. Dr. Zeinab Salah Seliem

Professor of pediatrics Faculty of medicine Cairo University

Prof. Dr. Mona Hassan Abou El Ela

Professor of pediatrics Faculty of medicine Cairo University

Dr. Mona Kamal El Ghamrawy

Lecturer of pediatrics Faculty of medicine Cairo University

Faculty of medicine Cairo University

Abstract of essay

This study reviews the recent topic in selection of appropriate antibacterial therapy in Pediatrics and factors important in the selection of antimicrobial agents in infants and children. Recommendations for antibiotic therapy for a wide range of infections occurring in children are provided.

Keywords: Antimicrobial therapy / Selection of antibiotic in pediatrics / Pediatric infection

ACKNOWLEDGEMENT

I would like to express my deepest thanks, gratitude and appreciation to Prof. Dr. Zeinab Salah Seliem Professor of pediatrics Faculty of medicine Cairo University, who guided me with patience and kindness, and give me endless encouragement and support.

I also want to express my sincere gratitude to Prof. Dr. Mona Hassan Abou Elela Professor of pediatrics Faculty of medicine Cairo University, for her generous help and great support.

I would like also to express my profound thanks to Dr. Mona Kamal El Ghamrawy Lecturer of pediatrics Faculty of medicine Cairo University, for her constructive encouragement and continuous assistance.

Finally, special appreciation to my family for their endurance and continuous support during the preparation of this work.

CONTENTS

Page
Introduction1
Chapter 1:
Group of antibiotics2
Chapter 2:
Use of antibiotics in pediatric respiratory
infections34
Chapter 3
Guidelines for selection of antibiotics
In the treatment of Otitis media 50
Chapter 4:
Selection of antibiotics in
Bacterial Meningitis67
Chapter 5:
Guidelines for selection of antibiotics
In bone and joint infection78
Chapter 6:
Use of antibiotics
In pediatric urinary tract infection86
Chapter 7:
Selection of antimicrobials
In acute gastroenteritis94
Chapter 8:
Antibiotic Prophylaxis in Surgery99
Recommendations105
Summary108
References110

Abbreviations

AOM	Acute otitis media		
AAP	American Academy of Pediatrics		
AAFP	American Academy of Family Physicians		
AHRQ	Agency for Healthcare Research and Quality		
ARI	Acute respiratory infections		
AWD	Acute watery diarrhea		
β-lactamase	Beta Lactamase Acute watery diarrhea		
CA-MRSA	Community acquired methicillin resistant S- aureus		
CSF	Cerebrospinal fluid		
CNS	Central nervous system		
CAM	Complementary and alternative medicine		
CXR	Chest x-ray		
DNA	Deoxy ribonucleic acid		
E.coli	Escherichia coli		
EPEC	Enteropathogenic E.coli		
ETEC	Enterotoxigenic E.coli		
G6PD	Glucose 6 phosphate dehydrogenase		
GAS	Group A streptococci		
GBS	Group B streptococci		
HA-MRSA	Hospital acquired methicillin resistant S-		
	Aureus		
IM	Intra-muscular		
LRTI	Lower respiratory tract infection		
MIC	Minimum inhibitory concentration		
MRSA	Methicillin resistant S aureus		

MRSE	Methicillin resistant S epidermidis		
MEE	Middle-ear effusion		
m RNA	Messenger ribo-nucleic acid		
NA	Non specific action		
nm	Nano-meter		
OME	Otitis media with effusion		
PBPs	Penicillin binding proteins		
SI	Surgical infection		
SSI	Surgical site infection		
TMP-SMZ	Trimethoprim-Sulphamethoxazole		
t RNA	Transfer ribo-nucleic acid		
U.S.	United States		
UTI	Urinary tract infection		
URTI	Upper respiratory tract infection		
WHO	World health organization		

LIST OF TABLES

Table (1)	Classification of Antibiotics By Mechanism of Action	Page
Table (2)	Antimicrobial therapy for group A streptococcal pharyngitis	٤٣
Table (3)	Antibiotic management of children with initial or uncomplicated episode of acute otitis media	٥٧
Table (4)	Antibiotic management of children with acute otitis media who fail initial treatment	٦٤
Table (5)	Recommended antimicrobial therapy for selected pathogens in children with bacterial meningitis	۷١
Table (6)	Dosage of antibiotics administrated intravenously for pediatric patients with bacterial meningitis	۷۳
Table (7)	Chemoprophylaxis of H. influenzae type b and meningococcal meningitis (N.meningitidis)	Y0
Table (8)	Empirical parenteral antibiotic therapy for pediatric bone and joint infections	٧٩
Table (9)	Selection of antimicrobials in acute gastroenteritis	96
Table (10)	Common pathogens in surgery and antibiotic susceptibility	۱.٤

LIST OF FIGURES

Figure (1)	Basic structure of the bacterial cell	Page r
Figure (2)	Comparison of the thick cell wall of Gram- positive bacteria with the comparatively thin cell wall of Gram-negative bacteria.	٤
Figure (3)		٣٢

Introduction

Selection of appropriate anti-infective therapy can be challenging to the pediatrician. It is not sufficient to know the likely pathogens causing the infection and which antibiotics have been successful in the past (Long and Dowell,2003).

It is also necessary to know prevalent antibiotic resistance patterns and the effect that treatment might have on promoting the development of resistance in the specific patient being treated and in the general population (Whitney et al.2000).

Determining the appropriate dose of antibiotics for children also can be difficult. Clinical studies evaluating antimicrobial pharmacokinetics in neonates (from extremely low birth weight to full term), infant, and children are few in number compared with studies performed in adults. Doses often are extrapolated from data derived from adult. Adverse event profiles also are based in large part on studies performed in preclinical animal toxicology models or in clinical trials conducted in older subjects (Craig, 1998).

The clinical relevance of understanding how antibiotics inhibit or kill pathogens at the site of infection, termed pharmacodynamic, has been integrated only recently into clinical investigations conducted in adults, similar studies in children to validate these concepts do not exist (Drusano, 2004).

This article reviews factors important in the selection of antimicrobial agents in infants and children. Recommendations for antibiotic therapy for a wide range of infections occurring in children are provided.

CHAPTER 1

Groups of antibiotics

Unlike physicians practicing in the 1940s, who had only sulfonamides and penicillin to treat infections, practitioners now choose from a broad (and sometimes overwhelming) number of antibiotics. However, trends in emerging antimicrobial resistance may force us to take a giant step backward to that frightening situation of the past of having bacteria that are essentially "untreatable" by any of our available antibiotics.

This article is an overview of some of the microbiology, pharmacology, and physiology critical to the rational use of antibiotics in today's practice. It summarizes the basic mechanisms of action of some commonly used antibiotics and briefly discusses the emergence of resistance to several common pathogens.

Structures of Bacteria Important to Antibiotic Action

The outermost component of most bacteria is the cell wall, a multilayered structure located external to the cytoplasmic membrane. The cell wall is composed of an inner layer of Peptidoglycan, a complex interwoven lattice of linear sugar (glycan) that are cross-linked by peptide chains. Peptidoglycan provides the rigid support by which the cell maintains its characteristic shape (Figure 1) (Ghuysen and Hakenbeck, 1994).

(Ghuysen and Hakenbeck, 1994).

Gram-positive and Gram-negative bacteria differ in their cell wall structures. In Gram-positive organisms, the peptidoglycan layer is a thick (15 to 80 nm) multilayer and may have a thin layer of teichoic acid outside the peptidoglycan. In contrast, Gram-negative organisms have a thin (2 nm) single layer of peptidoglycan covered by a complex outer membrane layer composed of lipopolysaccharides, lipoproteins, and phospholipids. The outer membrane of Gram-negative bacteria contains porin proteins that act as channels to transport small molecules such as sugars, metals, vitamins, and antibiotics into the bacterial cell (Jawetz et al. 1989) (Rogers, 1983).

The cytoplasm of bacteria contains an inner nucleoid region composed of single-stranded circular DNA and matrix that contains ribosomes, nutrient granules, metabolites, and plasmids. Plasmids are double-stranded circular DNA molecules that can replicate independently of the bacterial chromosomes. Most plasmids are extra chromosomal, but some are integrated into the bacterial chromosome. Plasmids occur in both Gramnegative and Gram-positive organisms and are an important source of genetic information that can convey resistance to various antibiotics (Figure 2) (Brooks, et al. 1991).

FIGURE2. Comparison of the thick cell wall of Gram-positive bacteria with the comparatively thin cell wall of Gram-negative bacteria. (Brooks, et al. 1991).

Selective Toxicity

An ideal antimicrobial agent would exhibit selective toxicity; the drug would be harmful to the infecting that is, microorganism without harming the host. Because peptidoglycan is present in bacteria but not in human cells, it is an excellent target for antibiotics. Similarly, antibiotics that affect protein synthesis take advantage of the differences in size and chemical composition of ribosomes from bacteria and eukaryotic organisms (i.e., those having a true nucleus surrounded by a nuclear membrane and multiple chromosomes, as in human cells). Other metabolic steps that occur in bacteria but not humans (e.g., synthesis of folic acid for nucleotides) also can be inhibited selectively by antibiotics (Gilman, et al. 1990) (Kucers and Bennett, 1987).

Bactericidal Versus Bacteriostatic Properties of Antibiotics

A favorable therapeutic outcome following the administration of a specific antibiotic depends on multiple factors, including those related to the bacteria (e.g., resistance mechanisms), the antibiotic (e.g., mechanism of action, ability to penetrate to the infected site, and spectrum of activity), and the host defenses (e.g., phagocytosis, opsonization, complement production) (Drusano, 2004).

When host defenses maximally effective, the are contribution of the antibiotic may be less important. For agent (e.g., example, bacteriostatic chloramphenicol, a erythromycin, clindamycin, and tetracycline) that slows or inhibits protein synthesis may be adequate when combined with the host's ability to opsonize and phagocytes bacteria. In contrast, a patient whose host defenses are impaired may require penicillin, bactericidal a agent (e.g., cephalosporin, aminoglycoside) that actually will kill or lyse the bacteria. Bactericidal agents (Table 1) generally are used to treat bacterial endocarditis, meningitis, and osteomyelitis as well as any bacterial infections in neutropenia patients (Mulligan and Cobbs, 1989).

MECHANISM	DRUGS	ACTION*
Weaken bacterial cell wall and cause cell death Inhibit cross-linking of peptidoglycan Activate autolytic enzymes (ie, autolysins) Inhibit other steps in peptidoglycan synthesis	Penicillins, cephalosporins Vancomycin	Bactericidal Bactericidal
Increase cell membrane permeability Cause leakage of cell contents	Polymyxin	NA
Inhibit protein synthesis Bind to 50S ribosome subunit Bind to 30S ribosome subunit	Chloramphenicol Erythromycin Clarithromycin Clindamycin Aminoglycosides Tetracyclines	Bacteriostatic Bacteriostatic Bacteriostatic Bacteriostatic Bacteriocidal Bacteriostatic
Inhibit nucleic acid synthesis Inhibit nucleotide synthesis Inhibit DNA-dependent RNA Polymerase Inhibit DNA super coiling and DNA synthesis	Sulphonamides, Trimethoprim Rifampicin Quinolones	Bacteriostatic Bacteriocidal Bacteriocidal

Table1. Classification of Antibiotics By Mechanism of Action

*Note: Bacteriostatic agents may be bactericidal against some organisms at high concentrations.

(Mulligan and Cobbs, 1989).

Antibiotic Susceptibility

If the concentration of an antibiotic required to inhibit or kill the organism can be achieved safely in the affected tissue or fluid, a microorganism is considered sensitive to a particular antibiotic. However, if the concentration required is greater than what can be achieved safely, the microorganism is considered to be resistant to that antibiotic. Most in vitro sensitivity tests are standardized on the basis of drug concentrations that can be achieved safely in plasma and may not take into account increased drug concentrations that may occur at specific sites (e.g., bladder) or any local conditions that may affect the activity of the antimicrobial agent (Kucers and Bennett, 1987).

Mechanisms of Action of Antibiotics

For many antibiotics, the mechanism of action is not understood fully. However, it is known that antibiotics can act in the following ways: 1) Inhibit cell wall synthesis, 2) Alter the permeability of the cell membrane, 3) Inhibit protein synthesis, and 4) Inhibit nucleic acid synthesis (Gilman, et al.1990).

(I) a- WEAKEN CELL WALL BY INHIBITING CROSS-LINKING OF PEPTIDOGLYCAN

Penicillins and Cephalosporins

Penicillins and cephalosporins (beta-lactam antibiotics) are among the most widely prescribed antibiotics because of their safety profiles. The basic structure of penicillin consists of a five-member thiazolidine ring connected to a beta-lactam ring to which a side chain is attached. In contrast, the cephalosporins have a six-membered hydrothiazine ring connected to the betalactam ring. An intact beta-lactam ring structure is an essential requirement for the biologic and antibacterial activity of both penicillins and cephalosporins. New derivatives of the basic