DYSFUNCTIONAL ELIMINATION SYNDROME IN CHILDREN

Essay Submitted for the partial fulfillment of M. Sc. Degree in Urology

BY Hatem Sultan Attia M.B.B.CH Faculty of Medicine, Cairo University

Supervised by

Prof. Dr. Amr Fekry Alshorbagy

Professor of Urology Faculty of Medicine, Ain Shams University

Prof. Dr. Mohamed Shukry Mohamed Shoeb

Assistant Professor of Urology Faculty of Medicine, Ain Shams University

Dr. Mohamed Wael Safa

Lecturer of Urology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2010

دراسة متلازمة اعتلال التفريغ عند الأطفال

دراسة للحصول على درجة الماجستير في جراحة المسالك البولية مقدمة من الطبيب

> حاتم سلطان عطيه بكالوريوس الطب والجراحة جامعة القاهرة

تحت إشراف الأستاذ الدكتور / عمرو فكرى الشوربجى أستاذ جراحة المسالك البولية كلية الطب - جامعة عين شمس

List of abbreviations

BC	:	Bladder Compliance
CKD	:	Chronic Kidney Disease
DES	:	Dysfunctional Elimination Syndrome
DMSA	:	Dimercaptosuccinic acid
DUI	:	Daytime Urinary Incontinence
EAS	:	External Anal Sphincter
EMG	:	Electromyogram
EUS	:	External Uretheral Sphincter
FDR	:	Fecal Dislodging in Rectum
GFR	:	Glomerular Filtration Rate
IAS	:	Internal Anal Sphincter
ICS	:	International Continence Society
IPG	:	Implanted Pulse Generator
IU	:	Idiopathic Urethritis
KUB	:	Kidney, Ureter and bladder plain X-ray
LUTS	:	Lower Urinary Tract Symptoms
MRI	:	Magnetic Resonant Image
NNBSD	:	Non Neuropathic Bladder Sphincter
		Dysfunction
OAB	:	Over Active Bladder
PEG	:	Poly Ethylene Glycol
PVR	:	Post Void Residual volume
SCr	:	Serum Creatinine
SN	:	Sacral nerve Neuromodulation

i

UG	:	Uro Gynecological clinic
US	:	Ultra Sound
UTI	:	Urinary Tract Infection
VCUG	:	Voiding Cysto Urethro Gram
VUR	:	Vasico Ureteric Reflux
VUD	:	Video Uro Dynamic

ii

List of Tables

Table	Title	Page
1	Prevalence of incontinence and constipation in	32
	children	
2	Relationship between UTI, DES, VUR	51
3	Prevalence of idiopathic urethritis with and	55
	without DES	
4	Effect of treatment of DES on prognosis of	55
	idiopathic urethritis	
5	Self-report of current lower urinary tract and	61
	bowel symptoms in UG and normal women	
6	Prevalence of childhood DES symptoms in	62
	normal and urogynecological women	
7	Significant associations between key childhood	63
	DES symptoms and adult OAB symptoms and	
	stress incontinence	
8	Significant associations between key childhood	64
	DES symptoms and adult voiding/bladder	
	emptying problems	
9	Significance (P) and AUC values for each	65
	question in male, female and total groups	
10	effect of polyethylene glycol3350 on	101
	improvement of uroflowmetry in children with	
	DES	
11	Diagnostic testing: Pre, Medication, postsurgical	111
	Treatment of case study 1	

iii

List of Figures

Figure	Title	Page
1	Computer generated 3-D reconstruction of normal human male pelvis at 36 weeks of gestation	9
2	Three-dimensional reconstruction from transverse sections of a 30-week-old fetus (282 mm CRL)	10
3	Immunohistochemical images of smooth muscular alpha-actin; transverse sections of a 24-week-old male fetus (220 CRL mm)	11
4	Immunohistochemical images of nerve fibres; transverse sections of 25-week-old male fetus (241 mm CRL)	12
5	Three-dimensional reconstruction of nerve fibres from transverse sections of a 36-week- old male fetus (330 mm CRL)	13
6	Three-dimensional reconstruction of nerve fibres from transverse sections of a 36-week old male fetus (CRL 330 mm)	14
7	Three-dimensional reconstruction of nerve fibres from transverse sections of a 40-week old male fetus (CRL 342 mm)	15
8	Three-dimensional reconstruction of nerve fibres from transverse sections of a 34-week old male fetus (CRL325 mm)	16
9	Three-dimensional reconstruction from transverse sections of a 36-week old male fetus (CRL 330 mm)	17
10	Computer generated 3-D reconstruction of normal human female pelvis at 36 weeks of gestation	21

iv

Figure	Title	Page
11	Human female specimen at 36 (A to D) and 20 (E to H) weeks of gestation	22
12	Human female specimen at 36 weeks of gestation. Transverse sections (A to J), caudally from distal urethra to bladder neck	22
13	Nervous fibers identified by neuronal immunolabeling at the proximal third of urethra	23
14	Transverse sections at the middle third of female fetal urethra, 24 th week of gestation (CRL 227 mm)	24
15	At 3 o'clock on the image B	24
16	Schematic representation of female urethral sphincter. Left lateral view	25
17	A sketch of the external anal sphincter from a lateral view	28
18	Anatomy based on the MRI images	28
19	Filling and voiding urodynamic study of children, father and grandfather with DES	35-36
20	Percentage of children with symptoms of dysfunctional elimination according to history of UTIs and VUR	47
21	Initial endoscopic appearance of penile(A), membranous(B), bulber (CandD) in 12years old boy representing with blood spotting between voids in underwear and dysuria	58
22	Initial endoscopic appearance $(A \text{ and } (B) \text{ and } pelvic floor EMG tracing (C) in 5-year-old boy presenting with penile pain and blood spotting.$	59
23	Dysfunctional elimination syndrome. US of the urinary bladder	78
24	Large bladder diverticulum by U\S resulting in incomplete bladder emptying.	79
25	FDR on KUB	81

Figure	Title	Page
26	Vasicoureteric reflux	82
27	Transverse (broken line) lower abdominal	83
	ultrasonography of rectum	
28	Overview of all recorded rectal diameters	84
	shows only slight overlap between groups.	
29	Transverse view of ultrasound. A, bladder in	85
	constipated patient with bladder base	
	compressed by fecal mass in distended rectum.	
	<i>B</i> , normal rectum in nonconstipated patient	
30	Perineal ultrasound. A, sagittal view of same	85
	constipated patient demonstrates lower limit of	
	distended rectum	
31	Dimercaptosuccinic acid renal scintigraphy.	
	Pinhole images show a normal left kidney and	87
	a right kidney with multiple cortical defects	
32	Folwmetry traces	
Α	Normal flow trace	
В	Flow trace suggesting detrusor overactivity	88-89
С	Plateu curve from outflow obstruction	
D	Flow trace suggesting detrusor underactivity	
Е	Straining	
33	Filling and voiding urodynamic studies in	91
	children with DES	
34	VUD detrusor sphincter dyscoordination	93
35	General bowel protocol	97
36	Enuresis protochol	99
37	Daytime urinary incontinence protochol	101
37	Temporary external lead exits child laterally at	114
	axillary line of patient after dilation of tract	
	with commercially available 14F ureteral	
	access sheath. Methylene tattoo marks	
	connection to external lead (square along lead)	
38	Final location of implanted pulse generator	115
	using modified technique	

vi

vii

Introduction and Aim of The Work.

Introduction

The association of constipation with urologic pathologic processes has been described in the literature since the 1950s, but it was only over the past decade that clinicians have paid more attention to this relationship and recognized its existence with the term dysfunctional elimination syndrome (DES). This term is used to reflect the broad spectrum of functional disturbances that may affect the urinary tract, including that of functional bowel disturbances (*Bower et al, 2005*).

The close proximity of the rectum to the posterior wall of the bladder makes it possible that any gross distention of the rectum by impacted feces can result in mechanical compression of the bladder and bladder neck, leading to urinary obstruction (O'Regan et al, 1997). In addition, it has been observed that large fecal impaction may induce significant detrusor instability and other bladder dysfunctions, which in turn will result in the urge syndrome, UTI, and reflux (O'Regan et al, 1997).

The impacted stool in the rectum compresses the bladder, reduces its functional capacity, and provokes earlier sensation to void. In addition, chronic pelvic floor spasm prevents complete relaxation during voiding, and will attribute to post voiding residuals *(Sarel et al, 2008)*.

Gatti et al identified a population of children evaluated in an emergency department who presented with urinary retention caused by constipation. These observations lend further evidence of the significant impact that a dysfunctional bowel can inflict upon the urinary tract.*(Gatti et al.2001)*

Others have found an association between renal dilatation and bladder residual and constipation in a

Introduction and Aim of The Work,

prospective study of children with functional constipation who were age matched with a control population of healthy children without constipation (*Dohil et al, 1994*).

The dysfunctional elimination syndrome (DES) is rare in adulthood. The OAB symptoms of DES, such as urgency, frequency, recurrent UTI and incomplete emptying, are more prevalent in childhood and more often present in adulthood (*Bower et al, 2005*).

Clinical assessment involves a history and physical examination, along with noninvasive uroflowmetry and residual urine quantification by bladder ultrasound scan. Abdominal radiographs (KUBs) may also be used to visually evaluate the amount of stool in the rectum and colon *(Heidi A. Allen et al 2007)*

Diagnosis often is based on subjective findings alone, including the parent's and/or child's report of the nature and frequency of stooling. Various methods have been developed to assess constipation objectively, including whole gut transit time, mean daily stool weight, daily KUBs, and digital examination of the rectum. These measures are generally not preferred because they are either time consuming or invasive. Radiographs have been used to visually assess constipation and have been valued because they are an inexpensive and quick method to obtain objective data. (Van den Bosch et al 2006).

Management of constipation in children with DES is imperative because this often confers an improvement in related conditions, including urinary tract infections (UTIs) and daytime incontinence. Children presenting with urinary incontinence, frequency, or urgency are generally recommended to begin conservative treatment, including the use of bladder diaries, timed voiding, and laxatives (*Heidi A. Allen et al, 2007*).

Introduction and Aim of The Work,

Treatment for constipation in the past has included enemas, fecal disimpaction and a variety of oral agents such as mineral oil, milk of magnesia and sorbitol (*Brad et al* 2003).

Use of polyethylene glycol 3350 for treatment of constipation in children with dysfunctional elimination. the beneficial effect of treating constipation for improvement of urinary continence and urodynamic parameters. Furthermore, this effect was seen with a single agent. It remains possible that other agents for constipation may be better for resolution of bowel and bladder symptoms in children with dysfunctional elimination, and further studies comparing different treatments (*Brad et al, 2003*).

Sacral nerve neuromodulation (SN) with the InterStim device (Medtronic, Minneapolis, MN) has been successfully applied to children with medically refractory dysfunction elimination syndrome (DES) (*Roth et al, 2008*).

DES is a constellation of chronic urinary symptoms that can be especially frustrating to the child, parents, and medical caregivers owing to the frequent evaluations and numerous medical therapies (*Roth et al 2008*).

Aim of The Work

Our work targets to study DES in children, regarding the definition, diagnosis, relationship with urinary tract infection and vesicoureteric reflux and importance of its management to improve the prognosis.

Anatomy of male urethral sphincter

Bladder Neck and Prostatic Urethra: Figure 1shows multiple views of 3-D reconstruction of the male sphincteric complex. The sphincteric complex is a continuous structure that surrounds the bladder neck, prostate, and membranous and proximal bulbar urethra. It is obvious that the sphincteric complex is not circumferential, with varying degrees of separation on the dorsal aspect. The trigonal musculature extends into the bladder neck only on the dorsal aspect of the prostate. The levator ani musculature surrounds the lower aspect of the urinary sphincter except on the dorsal aspect, where the rectourethralis muscle is located *(Selcuk Yucel et al., 2004)*.

The urinary bladder trigone :

The trigonal musculature extended caudally halfway to the verumontanum. The trigone narrowed below the ureteral orifices, then broadened and thickened dorsally to the bladder and prostate. The outer longitudinal muscle layer of the ventral bladder wall continued at the bladder neck over the ventral circular muscle fibers of the prostate to the level of the verumontanum. Dorsally the outer longitudinal layer of the detrusor attenuates beneath the trigone before reaching the prostate The 3-D reconstructions illustrate the circular muscular layer of the detrusor covering the ventral side of the bladder neck meatus. *(Selcuk Yucel et al., 2004)*.

<u>The muscular structure of the male external</u> <u>urethral sphincter :</u>

At the level of the bladder neck, smooth muscle fibres are of oblique and longitudinal orientation, and longitudinal fibres run parallel to the longitudinal smooth fibres of the prostatic urethra (Fig. 1B,I).

Anatomy

Three-dimensional reconstructed images showed that the external urethral sphincter continued from the prostatic base to the membranous urethra in the form of a crescent shape above the seminal colliculus and a horseshoe shape below the seminal colliculus (Fig. 1E,H), and covering the membranous urethra evenly at all sides (Fig. 1I). The striated muscle fibres of the external sphincter were arranged in a circular pattern in the membranous urethra (Fig. 1H,I), and were intermingled with the smooth muscle fibres in the posterior and lateral part of the sphincter (Fig. 2B– D). The relationship between the prostate, sphincteric complex and urethra did not change as a function of gestational age *(I. Karam et al., 2005)*.

The innervation of the male urethra

At the level of the bladder neck, the nerve fibres run under the pelvic fascia on either side of the rectovesical pouch, lateral and cranial to the rectum and the seminal vesicles, and penetrate into the bladder neck at 5 o'clock and at 7 o'clock positions (Figs 3A and 4A,B).

The autonomic nerves, originating from the inferior hypogastric plexus, run beneath the fascia of the levator ani muscle along the lateral surface of the rectum (Fig. 3A,D), around the anterolateral aspects of the seminal vesicles and over the inferolateral aspect of the prostate (Fig. 3A,B) (*Fritsch et al., 2004*).

At this level there are myelinated and unmyelinated nerve fibres on the posterior face of the bladder neck (Fig. 3C). A section of the unmyelinated fibres follow the ejaculatory ducts of the cranial prostate to reach the prostate and the prostatic urethra (Fig. 3C). Myelinated nerves follow the same course as the autonomic nerves and end in striated muscle fibres of the prostatic capsule (Figs 4C,D and 8C)(*Fritsch, 1989*).