

DEVELOPMENT OF AN ANALYTICAL MODEL TO PREDICT THE PERFORMANCE OF CHEMICAL EOR METHODS

By

Eng. Mohamed El-Sayed Ahmed Mohamed El-Tayeb

A Thesis Submitted to the Department of Mining, Petroleum, and Metallurgical Engineering, Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

> Master of Science in Petroleum Engineering

Faculty of Engineering, Cairo University Giza, Egypt 2017

DEVELOPMENT OF AN ANALYTICAL MODEL TO PREDICT THE PERFORMANCE OF CHEMICAL EOR METHODS

By Eng. Mohamed El-Sayed Ahmed Mohamed El-Tayeb

A Thesis Submitted to the Department of Mining, Petroleum, and Metallurgical Engineering, Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

> Master of Science in Petroleum Engineering

Under the Supervision of

Prof. Dr. Mohamed Helmy Sayyouh

Prof. Dr. Ahmed Hamdy El-Banbi

.....

.....

Professor of Petroleum Engineering Faculty of Engineering, Cairo University Professor of Petroleum Engineering Faculty of Engineering, Cairo University

Prof. Dr. Mahmoud Abu El-Ela

Professor of Petroleum Engineering Faculty of Engineering, Cairo University

Faculty of Engineering, Cairo University Giza, Egypt 2017

DEVELOPMENT OF AN ANALYTICAL MODEL TO PREDICT THE PERFORMANCE OF CHEMICAL EOR METHODS

By Eng. Mohamed El-Sayed Ahmed Mohamed El-Tayeb

A Thesis Submitted to the Department of Mining, Petroleum, and Metallurgical Engineering, Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

> Master of Science in Petroleum Engineering

Approved by the Examining Committee

Prof. Dr. Mohamed Helmy Sayyouh, Thesis Main Advisor

Prof. Dr. Ahmed Hamdy El-Banbi, Member and Supervisor

Prof. Dr. Mahmoud Abu El-Ela, Member and Supervisor

Eng. Sherif Ismail, External Examiner

- The Prime Minister of Egypt

Prof. Dr. Hamed Mohamed Khattab, External Examiner

- Faculty of Petroleum and Mining Engineering, Suez Canal University

Faculty of Engineering, Cairo University Giza, Egypt 2017

Engineer's Name:	Mohamed El-Sayed Ahmed Mohamed	ed El-Tayeb
Date of Birth:	06/03/1991	
Nationality:	Egyptian	
E-mail:	mohamed_eltayyeb@hotmail.com	
Phone:	01277377664	(Transity)
Address:	35 th El-Eshrine St., Faisal, Giza, Egy	rpt
Registration Date:	01/10/2013	
Awarding Date:	2017	
Degree:	Master of Science	10-1-2014 102
Department:	Petroleum Engineering	
Supervisors:		
•	Prof. Dr. Mohamed Helmy Sayyouh	
	Prof. Dr. Ahmed Hamdy El-Banbi	
	Prof. Dr. Mahmoud Abu El-Ela	
Examiners:		
	Eng. Sherif Ismail	(External Examiner)
	Prof. Dr. Hamed Mohamed Khattab	(External Examiner)
	Prof. Dr. Mohamed Helmy Sayyouh	(Thesis Main Advisor)
	Prof. Dr. Ahmed Hamdy El-Banbi	(Advisor)
	Prof. Dr. Mahmoud Abu El-Ela	(Advisor)

Title of Thesis:

Development of an Analytical Model to Predict the Performance of Chemical EOR Methods

Key Words:

Chemical EOR Methods; Predictive Model; Fractional Flow Theory; Areal Sweep Models; Areal Heterogeneity

Summary:

The main objective of this work is to develop an analytical forecasting model for the performance of chemical EOR processes. This predictive model is to be used as a presimulation tool for its simplicity and efficiency as it can consider most of the features accompanied by the chemical flooding besides the reservoir heterogenity. The developed model is verified through the application of some field cases and many comparison cases with a well-known commercial chemical simulator.

Acknowledgments

First of all, I would like to express my endless thanks to **ALLAH** for giving me the ability to perform this research.

I would like to express my deepest thanks and appreciation to the supervisors of this thesis: *Prof Dr. Mohamed Helmy Sayyouh*, *Prof Dr. Ahmed Hamdy El-Banbi*, and *Prof Dr. Mahmoud Abu El-Ela*, Mining, Petroleum, and Metallurgical Engineering Department, Faculty of Engineering, Cairo University for their extremely helpful advice, sincere assistance, continuous guidance, and encouragement in creating this work. Simply, without their kind helps, this work would not come to light.

Similarly, I would like to express my deepest appreciation to the juries of this thesis: *Prof Dr. Hamed Mohamed Khattab* (Faculty of Petroleum and Mining Engineering, Suez Canal University), *Eng. Abdallah Ghorab* (The Former Minister of Petroleum and Mineral Resources), and *Eng. Sherif Ismail* (The Prime Minister of Egypt) for their acceptance to judge the thesis and for their valuable comments and discussion.

I also would like to express my sincere thanks to *Eng. Sherif Haddara*, The Former Minister of Petroleum and Mineral Resources for his supportive suggestions, motivation, and encouragement throughout this research.

I would like to express my gratitude and deepest thanks to the members of the *Mining Studies and Research Center*, Faculty of Engineering, Cairo University, especially, *Prof Dr. El-Sayed Ahmed Mohamed El-Tayeb*, *Prof Dr. Khaled Abdel Fattah*, Mining, Petroleum, and Metallurgical Engineering Department, Faculty of Engineering, Cairo University, *Prof Dr. Sahar Mohamed El-Marsafy*, Chemical Engineering Department, Faculty of Engineering, Cairo University, of Engineering, Cairo University, and *Dr. Mohamed Samir*, General Operations Manager, Sahara Oil & Gas for their continuous follow-up and for their valuable discussion and advice during this work.

I would like also to direct my gratitude to *Eng. Samir Siso* (Assistant Chairman for Petroleum Engineering - Belayim Petroleum Company), *Eng. Doaa Mousa* (Reservoir Engineering Department Manager - Belayim Petroleum Company) and *Eng. Mostafa Kortam* (Reservoir Engineering Section Head - Belayim Petroleum Company) for their help during the phase of the model validation.

Similarly, I would like to send my gratitude to *Eng. Mohamed Ismael*, Senior Reservoir Engineer at Enap Sipetrol, for his help to learn a well-known commercial chemical simulator.

Last but not least, I would like to thank my professors and my colleagues, in the Petroleum Engineering Department, who encouraged me and gave me all the needed support during my academic life.

Dedication

To my Parents and my beloved sister.

This humble work is a sign of my love to you!

Table of Contents

Page

ACKNOWLEDGMENTS	Ι
DEDICATION	II
TABLE OF CONTENTS	III
LIST OF TABLES	VI
LIST OF FIGURES	VII
NOMENCLATURE	XI
ABSTRACT	XIV
CHAPTER 1: INTRODUCTION	1
CHAPTER 2: LITERATURE REVIEW	3
2.1 INTRODUCTION	3
2.2 CHEMICAL EOR METHODS	3
2.2.1 Polymer Flooding.	3
2.2.2 Surfactant-Polymer Flooding	4
2.3 CHEMICAL PREDICTIVE MODELS	5
2.3.1 Patton's Predictive Model	6
2.3.2 Paul's Predictive Model	7
2.3.3 Jones' Predictive Model	7
2.3.4 Giordano's Predictive Model	8
2.3.5 Mahfoudhi's Predictive Model	8
2.3.6 Mollaei's Predictive Model.	9
2.3.7 Yang's Predicitve Model	10
2.4 COMPARISON BETWEEN THE CHEMICAL PREDICTIVE MODELS	10
2.5 APPLICATION OF THE PREDICITVE MODELS: AVAILABLE SOFTWARES	12

2.6 CONCLUDING REMARKS	14
CHAPTER 3: STATEMENT OF THE PROBLEM, OBJECTIVE, AND METHODOLOGY	15
3.1 STATEMENT OF THE PROBLEM	15
3.2 OBJECTIVE	15
3.3 METHODOLOGY	15
CHAPTER 4: IMPLEMENTATION OF THE METHODOLOGY	17
4.1 INTRODUCTION	17
4.2 MAIN THEORIES OF THE MODEL	17
4.2.1 Fractional Flow Theory	19
4.2.2 Craig Geffen Morse Model	21
4.2.3 Streamtube Method For Areal And Vertical Sweep Calculations	22
4.3 MODEL CAPABILITIES	23
4.3 MODEL TREE AND SCENARIOS	23
4.5 MODEL ASSUMPTIONS AND CONSIDERATIONS	26
4.6 MODEL STRUCTURE	26
4.7 INPUT DATA	31
4.8 CALCUATIONS PROCEDURES AND SUBROUTINES	32
4.8.1 Shape Factor Subroutine	32
4.8.2 Stratified Reservoir Subroutine	33
4.8.3 Average Mobility Subroutine	33
4.8.4 Non-Newtonian Behavior	35
4.9 OUTPUT DATA	35
4.10 PROGRAMMMING LANGUAGE	36
CHAPTER 5: RESULTS AND DISCUSSION	37
5.1 INTRODUCTION	37
5.2 MODEL VALIDATION	37

5.2.1 Case-Study-1	37
5.2.2 Case-Study-2	41
5.2.3 Case-Study-3	50
5.2.4 Case-Study-4	55
5.3 FIELD APPLICATIONS	60
5.3.1 Brelum Field	60
5.3.2 North Burbank Pilot	63
5.3.3 Belayim Land II-A Pilot	66
5.4 DISCUSSION	72
CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS	76
6.1 CONCLUSIONS	76
6.2 RECOMMENDATIONS AND FUTURE WORK	77
REFERENCES	78
APPENDIX A: THE APPLICATION OF FRACTIONAL FLOW THEORY TO CHEMICAL EOR METHODS	83
APPENDIX B: CRAIG GEFFEN MORSE MODEL	90
APPENDIX C: STREAMTUBE MODEL	96
APPENDIX D: USER GUIDE	104
APPENDIX E: PUBLICATION	109

List of Tables

Table No.	Title	Page
2.1	Chemical EOR processes	5
2.2	Summary of the predictive models of chemical EOR	11
• •	methods	
2.3	Summary of the available softwares of chemical EOR methods	13
4.1	Comparison of waterflood prediction methods	18
4.2	Scenarios of the developed model	25
4.3	Input data of the model	31
5.1	Summary of input data of Case Study-1	38
5.2	Summary of input data of Case Study-2	42
5.3	Detailed layers specifications of the Case Study-3	50
5.4	Summary of the input data of Case Study-3	51
5.5	Summary of the input data of Case Study-4	56
5.6	Summary of the permeability data of Case Study-4	57
5.7	Summary of the input data of Brelum field	62
5.8	Detailed specifications for reservoir layers of North Bur	64
	Bank pilot	
5.9	Summary of the input data of North Bur Bank pilot	65
5.10	Summary of the rock and fluid properties of Belayim	69
	Land II-A	
5.11	Summary of the polymer solution parameters	70
5.12	Comparison between the developed model and Eclipse	73
5.13	Comparison between the predictive models of chemical	74
	EOR methods	
5.14	Comparison between the available softwares of chemical	75
	EOR methods	
B .1	Values of coefficients to calculate the conductance ratio	92

List of Figures

Figure No.	Title	
2.1	Comparison between waterflood and polymer flood	4
2.2	Schematic of chemical flood sequence	5
2.3	Illustration of the analytical solutions of Patton's predictive model	7
2.4	Reservoir model of Mahfoudhi's predictive model	9
2.5	Schematic of segregated flow	10
4.1	Fractional flow curve for waterflooding case	19
4.2	Fractional flow curve for polymer flooding case	20
4.3	Fractional flow curve for surfactant-polymer flooding case	21
4.4	Effect of mobility ratio on areal sweep efficiency of a 5- spot pattern	22
4.5	Streamtube model for a 5-spot pattern	22
4.6	Tree and scenarios of the developed model	24
4.7	Flow chart of the developed model	27
4.8	Flow chart of shape factor subroutine	32
4.9	Flow chart in case of stratified reservoir	33
4.10	Flow chart of average mobility subroutine	34
5.1	Cumulative oil production (N_p) vs. time for Case Study- 1 (waterflooding @ constant $q_{inj} = 200$ STB/day)	39
5.2	Oil in place (OIP) vs. time for Case Study- 1(waterflooding @ constant $q_{inj} = 200 \text{ STB/day}$)	40
5.3	Oil production rate (q_o) vs. time for Case Study-1 (waterflooding @ constant $q_{inj} = 200$ STB/day)	40
5.4	Water cut (WC) vs. time for Case Study-1 (waterflooding @ constant $q_{inj} = 200 \text{ STB/day}$)	41
5.5	Cumulative oil production (N_p) vs. time for Case Study- 2 – Scenario 1 (continuous polymer injection scenario @	44
5.6	constant q _{inj} =200 STB/day) Oil in place (OIP) vs. time for Case Study-2 – Scenario 1 (continuous polymer injection scenario @ constant q _{inj} =200 STB/day)	44

Figure No.	Title	Page
5.7	Oil production rate (q_0) vs. time for Case Study-2 –	45
	Scenario 1 (continuous polymer injection scenario @ $approx = -200 \text{ STP}(day)$	
50	$W_{ator out} (WC) = time for Case Study 2 - Scenario 1$	15
5.8	(continuous polymer injection scenario @ constant q_{inj} -200 STP (dev)	43
5.0	-200 SIB/day	16
5.9	Cumulative on production (N_p) vs. time for Case Study-	40
	2 - Scenario 2 (polymer slug injection scenario - 0.46 PV)	
5 10	We constant $q_{inj} = 200 \text{ STB/day}$	16
5.10	(polymer slug injection scenario - 0.46 PV @ constant	40
	$q_{inj} = 200 \text{ STB/day}$	
5.11	Oil production rate (q_0) vs. time for Case Study-2 – Scenario 2 (polymer slug injection scenario - 0.46 PV	47
5 12	(u) = 200 STB/day	47
5.12	- Scenario 2 (polymer slug injection scenario - 0.46 PV	Ψ/
	= Sectianto 2 (poryiner stug injection sectianto - 0.40 f $\sqrt{2}$	
5 12	(t) for Case Study 2	19
5.15	Sing size vs. Injected pole volume (t_d) for Case Study-2 Scenario 2 (notware study injection scenario 0.46 DV	40
	= Scenario 2 (polymer slug injection scenario - 0.46 PV	
5 1 /	$(M_{inj} = 200 \text{ STB/day})$	10
3.14	Cumulative on production (N_p) vs. time for Case Study-	48
	2 - Scenario 5 (polymer slug injection scenario - 0.212)	
5 15	$PV = Constant q_{inj} = 200 STB/day)$	40
5.15	water Cut (WC) vs. time for Case Study-2 – Scenario 3 (polymer slug injection scenario - 0.212 PV @ constant	49
	$q_{ini} = 200 \text{ STB/day}$	
5 16	$Q_{inj} = 200 \text{ STD}/\text{day}$	49
5.10	Scenario 3 (polymer slug injection scenario -0.212 PV	77
	(a) = 200 STB/day	
5 17	Slug size vs. injected pore volume (t_i) for Case Study-2	50
5.17	- Scenario 3 (polymer slug injection scenario -0.212 PV	50
	= Scenario 5 (poryiner sing injection scenario = 0.2121 V @ constant a: = = = = = = = = = = = = = = = = = =	
5 18	(unulative of production (N)) vs. time for polymer slug	52
5.10	injection (0.3 PV) case in a 5-spot stratified reservoir	JZ
5 10	Oil production rate (a) vs. time for polymer slug	53
5.17	injection (0.3 DV) as a in a 5 and stratified recording	55
	injection (0.5 F v) case in a 5-spot stratified reservoir	

Figure No.	Title	Page
5.20	Water cut (WC) vs. time for polymer slug injection (0.3 PV)	53
	case in a 5-spot Stratified Reservoir	
5.21	Injected polymer rate vs. time for polymer slug injection	54
	(0.3 PV) case in a 5-spot stratified reservoir	
5.22	Cumulative injected polymer vs. time for polymer slug injection	54
	(0.3 PV) case in a 5-spot stratified reservoir	
5.23	Cumulative produced polymer vs. time for polymer slug injection (0.3 PV) case in a 5-spot stratified	55
5 24	reservoir $C_{\rm unulative oil production}(N)$ vs. time for polymer slug	58
3.24	$(1.1)^{(1.1)}$ injection (0.318 PV) case in a 5-spot reservoir	50
5 25	Oil production rate (a_i) vs. time for polymer slug	59
5.25	injection (0.318 PV) case in a 5-spot Reservoir	57
5 26	Water production rate (a_{1}) vs. time for polymer slug	59
5.20	injection (0.318 PV) case in a 5-spot reservoir	57
5.27	Cumulative produced polymer vs. time for polymer slug	60
	injection (0.318 PV) case in a 5-spot reservoir	
5.28	Brelum field, Duval County, Texas, Brelum field unit,	61
	Polymer flood project	
5.29	Comparison between the predictive model and the actual	63
	data of Brelum field for the cumulative oil production	
	(N _p) vs. Cumulative Injected Water	
5.30	North Burbank pilot, Osage County, Okla., USA	64
5.31	Comparison between the predictive model and the actual	66
	data of NorthBank pilot for the cumulative pore volume	
	for oil recovery vs. cumulative injected pore volume of	
	water	
5.32	Geologic column of Gulf of Suez	67
5.33	Structrual contour map of Belayim Land II-A	68
5.34	Stages of Belayim Land II-A polymer project	69
5.35	Structural contour map of the pilot of Belayim Land II-	71
	А	
5.36	Comparison between the results of the simulation and the developed program for the polymer flooding pilot of Belayim Land II-A	71

Figure No.	Title	Page
A.1	Graphical solution of Fractional flow Theory in case of	85
	waterflooding	
A.2	Graphical solution of Fractional flow Theory in case of	88
	polymer flooding	
A.3	Graphical solution of Fractional flow Theory in case of	89
	surfactant flooding	
C.1	Streamline and equipotential lines for flow of a single	97
	phase in quadrant of five spot	
C.2	The constructed stream tube shape	98
C.3	Sample of stream tube with defined characteristics	99
D.1	The Process controllers section	105
D.2	Injection pattern and reservoir specifications	106
D.3	Relative permeability and fluid properties sections	106
D.4	Chemical specifications section	107
D.5	Run controllers section	107
D.6	Output data file	108

Nomenclature

Symbol		
A	Area	ft^2
Ai	Adsorption of component i per unit	µg/g rock
	mass of rock	
a	Pattern dimension	ft
Ci	Concentration of component i in fluid per unit pore volume	lbm/ft ³
Ĉı	Concentration of component i in stationary phase (rock) per unit pore volume of rock	lbm/PV
D_p	Amount of polymer adsorption expressed in pore volumes	Dimensionless
EA	Areal sweep efficiency	%
Eabt	Areal sweep efficiency at breakthrough	%
ED	Displacement efficiency	%
Evertical	Vertical sweep efficiency	%
f	Fractional flow of a given phase	Fraction, Dimensionless
$\mathbf{f}_{\mathbf{w}}$	Water fractional flow	Fraction, Dimensionless
F _{rr}	Residual resistance factor	Dimensionless
G_j	Shape factor of cell i	ft
h	Thickness	ft
Κ	Permeability	md
K_{ro}	Relative permeability to oil	Fraction, Dimensionless
K_{rw}	Relative permeability to water	Fraction, Dimensionless
K _{rwp}	Relative permeability to water after	Fraction, Dimensionless
L	polymer contact Half distance between the injector and producer	ft
М	Mobility ratio	Dimensionless
m-exponent	Corey exponent for oil	Dimensionless
n-exponent	Corey exponent for water	Dimensionless
\mathbf{N}_{p}	Cumulative oil production	STB
N_s	Original oil in place	STB
OIP	Oil in place	STB
ΔP	Pressure drop between the injector and	psi
	producer	
q	Flow rate	bbl/day
$\mathbf{q}_{\mathrm{inj}}$	Injection rate	bbl/day
Qi	Injected pore volume	Dimensionless
$r_{ m w}$	Radius of well	ft
S	Saturation of a given phase	Fraction, Dimensionless
t	Elapsed time	Days