Status of Ocular Surface in Thyrotoxicosis

Chesis

Submitted for Partial Fulfillment Master Degree in Ophthalmology

By

Eman Mahmoud Ahmed

(M. B., B. Ch.) Ain Shams University

Under Supervision of

Prof. Dr. Mahmoud Hamdi Ibrahim

Professor of Ophthalmology Faculty of Medicine - Ain Shams University

Prof. Dr. Mahmoud Abd Elhamid

Professor of Ophthalmology Faculty of Medicine - Ain Shams University

Dr. Abd Elrahman Gaber Salman

Assistant professor of Ophthalmology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University Cairo, Egypt 2015

وأنزل الله عليك الكتاب والحكمة و عَلَّمَكَ مَا لَمْ نَكُن تَعْلَمُ وكَانَ فَضْلُ اللَّهِ عَلَيْكَ عَظِيماً سررة لانساء (الآية (١١٢)

I would like to begin by thanking *ALLAH* for his guidance and protection, may this blessing always guide us.

I would like to offer my cordial thanks and utmost appreciation to *Prof. Dr. Mahmoud Hamdi Ibrahim*, prof. of ophthalmology, faculty of medicine; Ain shams University for giving me the honor to perform this thesis, for his kind supervision and generous cooperation by providing me with valuable remarks during all stages of my work.

I would like to express my thanks, great appreciation, and deepest gratitude to *Prof. Dr. Mahmoud Abd El Hamid*, professor of ophthalmology; Ain shams University for his valuable encouragement, advices and help throughout this work.

Special thanks are owed to *Ass. Prof. Dr. Abd El Rahman Gaber Salman*, Assistant professor of ophthalmology, faculty of medicine; Ain shams University for his willingness for guiding me with his advices, criticism and suggestions.

I wish also to thank *Prof. Dr. Elham Elshazly*, Professor of Pathology; Pathology Department of Research Institute of Ophthalmology for her great effort she has done in this work and for helping me to understand impression cytology.

🔉. Eman Mahmoud Ahmed

Tist of Contents

Title	Page No.
List of Abbreviations	ii
List of Tables	iii
List of Figures	V
List of Charts	vii
<u>Review of Literature</u>	
• Thyrotoxicosis	1
• Impression cytology of the ocular surface	19
• The Ocular Surface	30
Aim of the work	40
Patients and Methods	41
Results and Statistical Analysis of Results	49
Discussion	71
Summary	82
References	85
Arabic Summary	

List of Abbreviations

μm	micrometer	
2ry thyrotoxicosis	Secondary thyrotoxicosis	
CALT	Conjunctival Associated Lymphoid Tissues	
CIC	Conjunctival Impression Cytology	
DES	Dry Eye Syndrome	
Fig	Figure	
GD	Graves' disease	
IC	Impression Cytology	
LG	Lacrimal Gland	
MALT	Mucosal Associated Lymphoid Tissue	
mg	Milligram	
mm	Millimeter	
MMC	Mitomycin C	
mU/L	milli Unit / Litter	
OGD	Ophthalmic Graves' Disease	
OSDI	Oculars Surface Disease Index	
OSSN	Oculars Surface Squamous Neoplasia	
PAS	Periodic Acid Schiff	
P-Value	Probability	
r	Pearson's Correlation Coefficient	
RT - PRC	Reverse Transcriptase - Polymerase Chain Reaction	
SD	Standard deviation	
Sec	Second	
SLK	Superior Limbic Keratoconjunctivitis	
Т3	Triiodothyronine	
T4	Thyroxin	
TFBUT	Tear Film Break Up Time	
TR – Abs	Thyroid Receptors - Antibodies	
TSH	Thyroid Stimulating Hormones	
X2	Chi – square	

Tist of Tables

Table No.	Title	Page No.
Table (1): Table (2):	Causes of thyrotoxicosis Nelson staging system for impression cytology conjunctiva	of the
Table (3):	Comparison between groups as regard demo data.	
Table (4):	Comparison between groups as regard dura disease (months).	
Table (5):	Descriptive data of impression cytology grade study group.	
Table (6):	Comparison between group (I) graves and gree 2ry thyrotoxicosis as regard impression c grade	ytology
Table (7):	Comparison between group (I) graves and conregard impression cytology grade	
Table (8):	Comparison between group (II) 2ry thyrotoxico control as regard impression cytology grade	
Table (9):	Descriptive data of the TFBUT (sec.) of the group.	
Table (10):	Comparison between group (I) graves and gro 2ry thyrotoxicosis as regard TFBUT (sec.)	1 . ,
Table (11):	Comparison between group (I) graves and conregard TFBUT (sec.).	
Table (12):	Comparison between group (II) 2ry thyrotoxico control as regard TFBUT (sec.).	
Table (13):	Descriptive data of exophthalmos of the study g	group 64
Table (14):	Comparison between group (I) graves and gro 2ry thyrotoxicosis as regard exophthalmos	
Table (15):	Comparison between group (I) graves and con- regard exophthalmos.	

Tist of Tables (Cont...)

Table Mo.	Title	Page No.
Table (16):	Correlation Study between impression cyta and the Other Studied Parameters in grou Pearson Correlation Coefficient Test	ıp (I) Using
Table (17):	Correlation Study between impression cyta and the Other Studied Parameters in group Pearson Correlation Coefficient Test	p (II) Using
Table (18):	Correlation Study between impression cyta and the Other Studied Parameters in con Using Pearson Correlation Coefficient Test	ntrol group,

Tist of Figures

Fig. No.	. Title Page I	lo.
Fig. (1):	Shows diffuse goiter in a 28-year-old woman with Graves' hyperthyroidism	
Fig. (2):	Severe corneal ulceration due to extensive exposure secondary to proptosis	
Fig. (3):	'D'-shaped halves .Apply paper with a notch to mark side	21
Fig. (4):	Impression cytology of normal corneal surface showing corneal epithelial cells	
Fig. (5):	Impression cytology of normal transition zone from cornea to limbus	
Fig. (6):	Impression cytology of the conjunctivalised corneal surface in limbal stem cell deficiency showing reddish pink goblet cells	t
Fig. (7):	Impression cytology of the ocular surface showing dysplastic squamous cells with increased nucleus: cytoplasmic ratio	
Fig. (8):	A schematic drawing of conjunctival epithelium	33
Fig. (9):	The traditional view of the tear film in which there are three distinct layers	
Fig. (10):	Appearance of the first dry spot in BUT test	44
Fig. (11):	Nelson Grade 0 CIC specimen showing normal epithelial cells and abundant goblet cells	
Fig. (12):	Nelson Grade 1 CIC specimen showing minimal squamous metaplasia and few goblet cells	
Fig. (13):	Nelson Grade 2 CIC specimen showing squamous metaplasia and few goblet cells	
Fig. (14):	Nelson Grade 3 CIC specimen showing squamous metaplasia and no goblet cells	
Fig. (15):	(a) Conjunctival chemosis. (b) Superior conjunctival hyperemia and prominent episcleral vessels	
Fig. (16):	IC of control subject, showing Grade 0 squamous metaplasia	
Fig. (17):	IC of a Graves' disease patient, showing Grade 1 squamous metaplasia	

Tist of Figures (Cont...)

Fig. No.	Title	Page No.
Fig. (18):	IC of a Graves' disease patient, showing Grade metaplasia	1
Fig. (19):	IC of a Graves' disease patient, showing Grade metaplasia	1
Fig. (20):	IC of a Graves' disease patient, showing Grade metaplasia	-
Fig. (21):	IC of a Graves' disease patient, showing Grade metaplasia	1

Tist of Charts

Chart (Il	o. Title (Page No.	
Chart (1):	Bar chart between groups as regard sex	49
Chart (2):	Bar chart between groups as regard duration of disease (months)	50
Chart (3):	Bar chart Descriptive data of impression cytology grade of the study group.	53
Chart (4):	Bar chart between group (I) graves and group (II) 2ry thyrotoxicosis as regard impression cytology grade	54
Chart (5):	Bar chart between group (I) graves and control as regard impression cytology grade	55
Chart (6):	Bar chart between group (II) 2ry thyrotoxicosis and control as regard impression cytology grade.	59
Chart (7):	Bar chart Descriptive data of the TFBUT (sec.) of the study group	60
Chart (8):	Bar chart between group (I) graves and group (II) 2ry thyrotoxicosis as regard TFBUT (sec.)	61
Chart (9):	Bar chart between group (I) graves and control as regard TFBUT (sec.).	62
Chart (10):	Bar chart between group (II) 2ry thyrotoxicosis and control as regard TFBUT (sec.)	63
Chart (11):	Bar chart Descriptive data of exophthalmos of the study group	64
Chart (12):	Bar chart between group (I) graves and group (II) 2ry thyrotoxicosis as regard exophthalmos	65
Chart (13):	Bar chart between group (I) graves and control as regard exophthalmos.	66
Chart (14):	Negative correlation and significant between impression cytology grade and TFBUT sec.	68
Chart (15):	Positive correlation and significant between impression cytology grade and exophthalmos	68
Chart (16):	Negative correlation and significant between impression cytology grade and TFBUT sec.	.69
Chart (17):	Negative correlation and significant between impression cytology grade and BUTT	70

🕻 🔉 🗛 The Content and Conte

Thyrotoxicosis

Thyrotoxicosis, the disease which results from the biochemical and physiologic effects of excess thyroid hormone regardless of cause, is one of the more common endocrine disorders. By definition, hyperthyroidism is a term restricted to situations in which the thyroid gland is responsible for overproducing thyroid hormone. Arbitrarily the causes of thyrotoxicosis can be differentiated into those associated with a high uptake on radioactive iodine or technetium scanning (most commonly Graves' disease (GD)) and those with a low uptake (Table 1) *(Elston and Conaglen, 2005).*

Thyrotoxicosis can be associated with hyperthyroidism or can also occur in the absence of increased thyroid hormone secretion. The most common cause of thyrotoxicosis is GD, in which autoantibodies bind to and stimulate the thyrotropin (also called thyroid stimulating hormone TSH receptors found on the surface of thyroid follicular cells, which results in excess production of T3 and T4. The next most common cause is autonomous overproduction of thyroid hormones by one (solitary toxic adenoma) or more (toxic multinodular goiter) nodules within the thyroid. The frequency of these causes varies with iodine intake (*Laurberg et al., 2001*).

8

Two main hormones are synthesised and released by the thyroid: thyroxin T4 and triiodothyronine T3. T4 is a prohormone and is present in higher concentrations than T3, whereas T3 is biologically active through interaction with specific nuclear receptors that are present in nearly all tissues.T3 regulates energy production and metabolic rate and has profound effects on cardiac, hepatic, and neuromuscular function, as well as on fetal and postnatal growth and development (*Franklyn and Boelaert, 2012*).

Prevalence and incidence:

The prevalence and incidence of thyroid disorders is influenced primarily by sex and age. Thyroid disorders are more common in women than men, and in older adults compared with younger age groups (*DeRuiter, 2002*).

AETIOLOGY/ RISK FACTORS:

In general, thyrotoxicosis can occur by different factors. The thyroid is inappropriately stimulated by trophic factors or there is constitutive activation of thyroid hormone synthesis and secretion leading to autonomous release of excess thyroid hormone. The thyroid stores of preformed hormone are passively released in excessive amounts owing to autoimmune, infectious, chemical, or mechanical insult, or there is exposure to extra-thyroidal sources of thyroid hormone, which may be either endogenous (struma ovarii,

🕻 🔉 🗛 The Content and Conte

metastatic differentiated thyroid cancer) or exogenous (factitious thyrotoxicosis) (*Bahn et al., 2011*).

Smoking is a risk factor, with an increased risk of both GD and toxic nodular goiter. In areas with high iodine intake, GD is the major cause, whereas, in areas of low iodine intake, the major cause is nodular goiter. A correlation between diabetes mellitus and thyroid dysfunction has been described. In a Scottish population with diabetes, the overall prevalence of thyroid disease was found to be 13%, highest in women with type 1 diabetes (31%). As a result of screening, new thyroid disease was diagnosed in 7% of people with diabetes (hyperthyroidism in 1%) (*Nygaard, 2010*).

Thyrotoxicosis with high radioiodine Uptake	Thyrotoxicosis with low radioiodine Uptake
Autoimmune – Graves' disease	Thyroiditis
	– Subacute
Autonomous thyroid tissue	– Postpartum
– Toxic multinodular goiter	- Drug-induced
- Solitary toxic adenoma	e.g. interferon, amiodarone – Radiation
TSH-mediated	
– TSHoma (rare)	Autonomous thyroid tissue with iodine
	load e.g. amiodarone/x-ray contrast
HCG-mediated	Č V
– Hyperemesis gravidarum	Excessive exogenous thyroid hormone
– Hydatidiform mole/	intake
choriocarcinoma (rare)	
– Testicular tumors (rare)	Ectopic thyrotoxicosis
	- Struma ovarii (ectopic thyroid
	tissue) (rare)
	- Metastatic follicular cancer with
	with functioning metastases (rare)

 Table (1): Causes of thyrotoxicosis.

(Elston and Conaglen, 2005)

🕻 🔉 🗛 Teoiew of Literature

Clinical features of thyrotoxicosis:

Presenting symptoms resulting from excess metabolic activity include tiredness, heat intolerance, unexplained weight loss, excess sweating, palpitations, tremor and irritability.

Older patients with 'apathetic thyrotoxicosis may present predominantly with weight loss, anorexia, muscle weakness, depression and lethargy.

Occasional patients may present with sudden onset profound muscle weakness (which may progress to a flaccid tetraparesis), associated with severe hypokalemia, which resolves completely on restoration of the serum potassium (*Elston and Conaglen, 2005*).

Ocular involvement might be present in GD; other diverse complications include anemia (which has a reported prevalence in thyrotoxicosis of 22%) (*Gianoukakis et al, 2009*).

Investigations:

All patients with known or suspected hyperthyroidism should undergo a comprehensive history and physical examination, including measurement of pulse rate, blood pressure, respiratory rate, and body weight. In addition, thyroid size; presence or absence of thyroid tenderness, symmetry, and nodularity; pulmonary, cardiac, and neuromuscular function; and

` 🔉 Review of Literature

presence or absence of peripheral edema, eye signs, or pretibial myxedema should be assessed (*Ventrella and Klein, 1994*).

Biochemical evaluation

Serum TSH measurement has the highest sensitivity and specificity of any single blood test used in the evaluation of suspected hyperthyroidism and should be used as an initial screening test (*de los santos et al., 1989*).

However, when hyperthyroidism is strongly suspected, diagnostic accuracy improves when both a serum TSH and free T4 are assessed at the time of the initial evaluation. The relationship between free T4 and TSH (when the pituitarythyroid axis is intact) is an inverse log-linear relationship; therefore, small changes in free T4 result in large changes in TSH concentrations. Serum TSH levels serum are considerably more sensitive than direct thyroid hormone measurements for assessing thyroid hormone excess (Spencer et al., 1990).

In overt hyperthyroidism, usually both serum free T4 and T3 estimates are elevated, and serum TSH is undetectable; however, in milder hyperthyroidism, serum T4 and free T4 estimates can be normal, only serum T3 may be elevated, and serum TSH will be <0.01 mU/L (or undetectable) (*Bahn et al., 2011*).