Expression of Estrogen Receptors (Alpha and Beta) in Pre-Malignant & Malignant Colorectal Lesions Using Immunohistochemistry and PCR Techniques

Thesis Submitted for Fulfillment of MD Degree in Tropical Medicine by

MARWA KHAIRY MEHASSEB

(MB.B.Ch, M.Sc. Tropical Medicine)

SUPERVISORS

PROF. DR. AYMAN YOSRY ABD EL-RAHIM

Professor of Tropical Medicine

Faculty of Medicine – Cairo University

PROF. DR. ALY AHMED EL-HENDAWY

Professor of Pathology

Faculty of Medicine - Cairo University

PROF. DR. OSSAMA AHMED KHALF ALLAH

Professor of Clinical pathology

Faculty of Medicine - Cairo University

PROF. DR. MOHAMED SAID ABD EL-AZIZ

Lecturer of Tropical Medicine

Faculty of Medicine – Cairo University

Faculty of Medicine
Cairo University
2011

ABSTRACT

Colorectal cancer (CRC) is one of the most common malignant neoplasms in Egypt. Adenomatous polyps and inflammatory bowel diseases (IBD) are considered the commonest pre-malignant lesions for CRC. A possible protective effect for estrogens on CRC risk has been suggested by numerous epidemiological and experimental studies.

<u>Aim of work:</u> to assess the expression of estrogen receptors (alpha and beta) in pre-malignant & malignant colorectal lesions.

<u>Patients and methods</u>: The 45 patients studied were divided into 4groups; CRC group (15patients), IBD group (10patients), adenomatous polyps group (10 patients) and control group (10 patients). Endoscopic guided biopsy was done from the colonic lesions the nearby normal colonic mucosa (in the first three groups) and from the control group. Estrogen receptors (alpha and beta) expression in the biopsies has been assessed by immunohistochemical staining and RT-PCR.

Results: all the studied biopsies have shown negative expression of estrogen receptors alpha and beta by both techniques doubting the proposed protective effect of estrogen and estrogen ligands in the protection against CRC and prevention of premalignant lesions.

Key words: Estrogen receptors – CRC – IBD – Adenomatous polyps – RT-PCR - Immunohistochemistry

Acknowledgement

First of all, Thanks to GOD, without his will, nothing could have been achieved.

My gratitude goes to **Prof. Dr. Ayman Yosry** Professor of Tropical Medicine, Cairo University, for his support and endless advices and help. I wish one day to have his way of thinking and part of his perfectionism and part of his scientific knowledge.

My deep thanks and appreciation to **Prof. Dr. Mohamed** Said, Assistant Professor of Tropical Medicine, Cairo University, for his strict supervision and revision of this work, generous help and his valuable comments to complete this work properly.

I would like to thank **Prof. Dr. Aly El-Hendawy** Professor of Pathology, Cairo University and **Prof. Dr. Ossama Khalf-Allah** Professor of Clinical Pathology, Cairo University for their perfect work and their time and effort consumed to perform this work, no words can express my gratitude to them.

I would like also to acknowledge the magnificent help and support of all the members of endoscopy unit doctors and nurses for completing this work and for the facilities they gave to me to perform this work.

To all members of Tropical medicine department, Cairo University; professors and colleagues to whom I have the honor to belong, to my professors who encouraged and supported me, trained me and pushed me forwards. Special appreciation goes to **Prof. Dr. Rabab Fouad** Professor of Tropical Medicine, Cairo University for her endless help, for her generous care, advices and sympathy.

I wish to express my deepest gratitude to **Prof. Dr. Gamal Esmat and Bilharzial research unit** for the financial support without this support this work could not be done.

I would like to thanks my family for their endless support and care for my whole life. They were always helping and encouraging me to continue and finish this work. I really owe to them so much.

Last, but certainly not least, I owe to my patients included in this study and to all our Kasr El-Aini patients my own life. May God alleviate their sufferings and may all our efforts be just for their own benefit.

TABLE OF CONTENTS

Introduction and aim of the work	1
Review of literature	
Chapter I: Colorectal cancer	4
Chapter II: Colonic precancerous lesions	30
• Chapter III: Estrogen receptors and the colon	55
Patients and Methods	75
Results	85
Discussion	108
Summary and Conclusions	121
Recommendations	123
References	124
•••••	

List of Tables

Table I	Modified Duke Staging System	13
Table II	TNM Staging System (Tumor, Node, Metastasis)	13
Table III	ACG guidelines CRC screening recommendations	26-27
Table IV	American Cancer Society Guidelines on Screening and Surveillance for the Early Detection of Colorectal Adenomas	35
Table V	Bethesda guidelines for DNA microsatellite instability testing of CRC	41
Table VI	Amsterdam criteria for the diagnosis of HNPCC	42
Table VII	Proposed criteria of inherited colon cancer syndromes	44
Table VIII	Markers of malignant transformation and progression in IBD	49
Table IX	CRC Screening and Surveillance Recommendations in UC	53
Table 1	Patients served by the endoscopy unit from the period of September 2008 to April 2010	85
Table 2	Age of the studied patients	86
Table 3	Sex distribution of the studied patients	87

Table 4	Clinical presentations of the studied patients	87
Table 5	Laboratory data of the studied patients	94
Table 6	Stool analysis of the studied patients	95
Table 7	Ultrasonographic features of the studied patients	96
Table 8	Site of the colonic lesions of the studied patients	99
Table 9	Type of the colonic lesions of the studied patients	100

List of Figures

Figure I	World incidence and mortality of colorectal cancer	4
Figure II	Fungating mass of the sigmoid colon with necrotic areas	11
Figure III	Malignant ulcer of the transverse colon	11
Figure IV	Proposed genetic paradigm of colorectal cancer development	15
Figure V	Pathways involved in the molecular pathogenesis of CRC	17
Figure VI	Colorectal cancer appearance on barium enema	24
Figure VII	Large rectal adenomatous polyp	33
Figure VIII	Barium enema showing two sigmoid polyps	34
Figure IX	Categories of colorectal cancer syndromes	36
Figure X	Adenomatous polyposis of the colon	37
Figure XI	Severe extensive form of ulcerative colitis	47
Figure XII	Crohn's disease with aphthoid and rail-way ulcers	47

Figure XIII	Structure and Production of Endogenous Estrogens	55
Figure XIV	Schematic structural comparison between ERα and ERβ	58
Figure XV	Mechanisms of action of estrogen receptors	59
Figure XVI	Influence of estrogens on important pro- and anti- inflammatory pathways in different cell types	72
Figure XVII	Example of positive nuclear staining ERα and ERβ in formalin-fixed, paraffin-embedded human breast carcinoma	80
Figure XVIII	Steps for RNA tissue extraction	81
Figure XIX	Positive ERα and ERβ expression by automated amplification curve created with LightCycler®	84
Figure 1	Bleeding per rectum in the studied groups	88
Figure 2	Diarrhea in the studied groups	89
Figure 3	Mucorrhea in the studied groups	89
Figure 4	Significant weight loss in the studied groups	90
Figure 5	Abdominal pain in the studied groups	90
Figure 6	Clinical presentations of the studied CRC patients	91

Figure 7	Clinical presentations of the studied patients with adenomatous polyps	92
Figure 8	Clinical presentations of the studied IBD patients	92
Figure 9	Clinical presentations of the studied control group	93
Figure 10	CEA level in the different groups of the studied patients	94
Figure 11	Ultrasonographic appearance of malignant hepatic flexure lesion	97
Figure 12	Ultrasonographic appearance of CD patient with diffuse ileal bowel wall thickening and 5 cm long with loss of layering	98
Figure 13	Site of the colonic lesions of the studied patients	99
Figure 14	Type of the colonic lesions of the studied patients	100
Figure 15	Sites and types of the colonic lesions of the studied patients	101
Figure 16	Site and types of CRC lesions in the studied CRC patients	102
Figure 17	Case of malignant rectal mass	102
Figure 18	Site and types of adenomatous polyps in the studied patients	103

Figure 19	Case of sigmoid adenomatous polyp	103
Figure 20	Case of ulcerative colitis with rectal involvement	104
Figure 21	Colonic lesions in the studied control group	104
Figure 22	Histopathology of colorectal adenocarcinoma	105
Figure 23	Histopathology of a case of FAP	105
Figure 24	Histopathology of ulcerative colitis patient	106
Figure 25	Negative estrogen receptors (alpha & beta) expression by RT-PCR (light Cycler®)	107
Figure 26	Negative estrogen receptors (alpha & beta) expression in control group patient by immunohistochemical staining	107

LIST OF ABBREVIATIONS

- ACF: Aberrant crypt foci
- ACG: American collage of gastroenterology
- **AF**: activation functions
- AFAP: attenuated familial adenomatous polyposis
- AJCC: American joint committee on cancer
- AP-1: activator protein-1
- APC: attenuated adenomatous polyposis coli
- 5-ASA: 5-aminosalicylic acid
- CBC: Complete blood count
- CD: Crohn's disease
- CEA: carcinoembryonic antigen
- CIN: chromosomal instability
- **COX-2**: cyclo-oxygenase 2
- CRC: colorectal cancer
- CT: computerized tomography
- DALM: dysplasia-associated lesions or masses
- DBD: DNA binding domains DCBE: double contrast barium enema
- DCC gene: deleted in colon cancer
- **E**₁: estrone
- E₂: estradiol
- E₃: estriol
- ER: estrogen receptors
- ERα: Estrogen receptor Alpha
- ERβ: estrogen receptor Beta

- ERE: estrogen receptor-E2
- **ESR**: erythrocyte sedimentation rate
- FAP: familial adenomatous polyposis
- FCC: familial colorectal cancer
- FIT: fetal immunohistochemical staining
- FOBT: fecal occult blood testing
- GAPDH: Glyceraldehyde 3-phosphate dehydrogenase
- GIT: gastrointestinal tract
- hMLH1: human mutL homolog 1
- hMSH2: human mutS homolog 2
- HNPCC: hereditary non polyposis colorectal cancer
- hPMS: human postmeiotic segregation
- HRT: hormone replacement therapy
- Hsp: heat-shock proteins
- IBS: irritable bowel syndrome
- IL: interleukin
- IPAA: ileal pouch–anal anastomosis
- IRA: ileo-rectal anastomosis
- **JPS**: Juvenile polyposis syndrome
- kDa: kilo Dalton IBD: inflammatory bowel disease
- LBD: Ligand binding domain
- MAP: MUTYH-associated polyposis
- MDM2 ligase: murine double minute 2 ligase
- MMR genes: mismatch repair genes
- MORE: Multiple Outcomes of Raloxifene Evaluation
- MSI: microsatellite instability

• NCI: national cancer institute

• NF-kB: nuclear factor kappa-light-chain-enhancer of activated B cells

• NO: nitrous oxide

• NSAIDs: non steroidal anti-inflammatory drugs

• **PJS**: Peutz–Jeghers syndrome

• PR: progesterone receptors

• PSC: primary sclerosing cholangitis

• UC: ulcerative colitis

• **RER**: replication error

• RT-PCR: real time polymerase chain reaction

• **SERMs**: Selective estrogen receptor modulators

• **Sp-1**: stimulating protein-1

• TGF-B: transforming growth factor B

• TNF: tumour necrotic factor

• TSG: tumour suppressor gene

• WHI: Women's Health Initiative

• WHO: World heath organization

INTRODUCTION

Colorectal cancer (CRC) constitutes 9.4% of all cancer worldwide. It is ranked as the 4th most common cancer site for males after lung, prostate and stomach cancer, and the 2nd for females after breast cancer (WHO, 2006).

The incidence of CRC is increasing globally; worldwide an estimated 1 million cases of CRC were diagnosed in 2002, accounting for more than 9% of all new cancer cases (*Jemal et al.*, 2009).

In Egypt, according to National Cancer Institute (NCI) statistics, in males CRC ranks the sixth most common cancer after bladder, liver, NHL, lung and leukemia, while in females it ranks the fifth common caner after breast, non Hodgkin lymphoma, leukemia and liver cancer. The median age of CRC cases in Egypt is 48 years for both males and females (Elattar, 2005).

CRC is more common in men than women, the difference being more striking amongst pre-menopausal women and age-matched men (*Wong et al.*, 2005). A possible protective effect for estrogens on CRC risk has been suggested by numerous epidemiological and experimental studies (*Ries et al.*, 2000; Campbell et al., 2001 and Terry et al., 2002).

The anti-estrogen (tamoxifen) in cancer breast is associated with increase the risk of CRC. Patients with Estrogen receptors (ER) expression are suggested to have a better survival rate (*Slattery et al.*, 2000).