A thesis submitted by

Karim Saber Hussein Shalaby

Bachelor of Pharmaceutical Sciences, 2008, Ain Shams University Teaching assistant, Department of Pharmaceutics and Industrial Pharmacy, Ain Shams University

For partial fulfillment of the requirements for the Master Degree in Pharmaceutical Sciences (Drug technology)

Under the supervision of

Prof. Dr. Abdel-Hameed Abd-Allah El-Shamy

Professor of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy, Ain Shams University

Prof. Dr. Omaima Ahmed Sammour

Professor and Head of Pharmaceutics and Industrial Pharmacy department Faculty of Pharmacy, Ain Shams University

Dr. Mahmoud Eid Soliman

Lecturer of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy, Ain Shams University

Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy Ain Shams University 2015

أنظمة توصيل نانوية لعلاج السرطان

رسالة مقدمة من

كريم صابر حسين شلبي

المعيد بقسم الصيدلانيات والصيدلة الصناعية كلية الصيدلة - جامعة عين شمس بكالوريوس العلوم الصيدلية- 2008 - جامعة عين شمس

وذلك لاستكمال متطلبات الحصول على درجة الماجيستير في العلوم الصيدلية (تخصص تكنولوجيا الأدوية)

تحت إشراف

أ.د.عبد الحميد عبد الله الشامي

أستاذ الصيدلانيات والصيدلة الصناعية - كلية الصيدلة - جامعة عين شمس

أستاذ ورئيس قسم الصيدلانيات والصيدلة الصناعية - كلية الصيدلة - جامعة عين شمس

د .محمود عيد سليمان

مدرس الصيدلانيات والصيدلة الصناعية كلية – الصيدلة - جامعة عين شمس

قسم الصيدلانيات والصيدلة الصناعية كلية الصيدلة جامعة عين شمس 2015

Acknowledgement

<u>Acknowledgement</u>

First I'd like to express my sincere thanks and praises to Allah for every breathe I take and for every letter was written in this thesis.

My deepest prays and thanks to **Prof. Dr. Abdel Hameed Abd-Allah El shamy**, Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, who was my teacher, second father and supervisor. I would like to offer this work to his soul (May Allah bless his soul and make his eternity to the paradise). He was always pushing me to continue in research and was a giant role model for me in this field.

Sincere gratitude, thanks and appreciations to *Prof. Dr. Omaima Ahmed Sammour*, Professor and Head of Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Ain Shams University. She was keen on me as a second mother and her guidance and supervision throughout this thesis was very impressive to me. I wish her all the best in life.

I'd like to express my deepest thanks and sincere gratitude to *Dr. Mahmoud Eid Soliman*, Lecturer of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University. No words can express his help and guidance throughout this thesis. He was and still one of my main advisors in research and my older brother in life.

I'd like to express sincere thanks and appreciation to *Dr*. *Luca Casettari*, PostDoc and Contract Professor in Pharmaceutical

Acknowledgement

Technology Science, Department of Biomolecular Sciences, School of Pharmacy, University of Urbino, Italy, for his effort in the synthesis of polymers used in this thesis.

Many thanks and gratitude to *Dr. Ahmed Esmat*, Lecturer of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, for his great effort in performing of cytotoxicity studies.

I would especially like to thank *Mr. Abd-Allah Hussain*, Senior researcher at advanced measurements and research unit, Faculty of Pharmacy, Ain Shams University, for his enormous help and sincere work in completing the biological studies.

My Grateful thanks to my colleagues in the Department of Pharmaceutics and Industrial Pharmacy for their valuable support, help and encouragement.

I present my sincere gratitude, thanks and love to *my Mother and Father* who were, and still, always encouraging to complete my scientific research. Really, I can't express with words what they have done for me. May Allah bless them and have mercy upon them as they brought me up when I was small.

I would like to express my thanks, love and appreciation to *my beloved wife* and *my little girl Sara* for their continuous help and support during this work and for their patience on my continuous absence from home doing this thesis at college.

Lastly, I would like to thank *my two brothers (Islam and Amr)* for their fast help and support in all issues in my life.

List of contents

LIST OF CONTENTS

LIST OF ABBREVIATIONS	i
LIST OF TABLES	iv
LIST OF FIGURES	ix
ABSTRACT	xvii
GENERAL INTRODUCTION	1
SCOPE OF WORK	26

<u>Chapter 1</u>

Preparation and characterization of Noscapine nanoparticles.

INTRODUCTION	28
EXPERIMENTAL	32
Materials	32
Equipment	33
Methodology	34
1. Spectrophotometric assay of Noscapine:	34
1.1. Determination of λ_{max} of Noscapine:	34
1.2. Construction of calibration curve of Noscapine:	34
2. Synthesis of block copolymers:	34
3. Characterization of block copolymers:	37
3.1. ¹ H-NMR:	37
3.2. Gel permeation chromatography (GPC):	37
4. Preparation of Noscapine loaded polymeric nanoparticles:	37
5. Characterization of the prepared nanoparticles:	38
5.1. Particle size and zeta potential determinations:	38
5.2. Determination of encapsulation efficiency:	38
5.3. Transmission electron microscopy (TEM):	39
5.4. Atomic force microscopy (AFM):	39
6. In-vitro release of Noscapine from nanoparticles:	40
6.1. Chromatographic conditions	40

List of	l contents
6.2. Method validation	40
i. Linearity	40
ii. Range	41
iii. Accuracy	41
iv. Precision	41
6.3. Noscapine release profile	42
7. Colloidal stability studies	42
8. In-vitro stability studies	43
RESULTS AND DISCUSSION	44
1. Spectrophotometric assay of Noscapine:	44
1.1. Determination of λ_{max} of Noscapine:	44
1.2. Construction of calibration curve of Noscapine:	45
2. Characterization of block copolymers:	46
3. Characterization of prepared nanoparticles:	68
3.1. Particle size and zeta potential determinations:	68
3.2. Determination of encapsulation efficiency:	72
3.3. TEM microscopy of Noscapine loaded polymeric nanoparticles:	76
3.4. Atomic force microscopy (AFM):	78
4. In-vitro release of Noscapine from nanoparticles:	82
4.1. HPLC analytical method validation	82
i. Range and linearity	82
ii. Accuracy	82
iii. Precision	82
4.2. Noscapine release profile	86
5. Colloidal stability studies:	89
6. In-vitro stability studies:	91
CONCLUSIONS	93

Chapter 2

Determination of factors controlling the particle size and entrapment efficiency of Noscapine in PEG/PLA and PEG/PCL nanoparticles using artificial neural networks.

INTRODUCTION

List of contents	
EXPERIMENTAL	101
Software	101
1. Experimental design and data set	101
2. Training, test and validation	106
RESULTS & DISCUSSION	109
1. Data analysis using ANNs to determine the variables that affect the particle size of PEG/PLA copolymer nanoparticles.	109
2. Data analysis using ANNs to determine the variables that affect the particle size of PEG/PCL copolymer nanoparticles.	115
3. Determination of variables that affect Noscapine entrapment efficiency within PEG/PLA copolymer nanoparticles.	120
4. Determination of variables that affect Noscapine entrapment efficiency within PEG/PCL copolymer nanoparticles.	126
CONCLUSIONS	131

Chapter 3

Biological studies on Noscapine loaded nanoparticles formulations.

INTRODUCTION	133
EXPERIMENTAL	136
Materials	136
Equipment	137
Cells	137
Animals	137
Methodology	138
1. Cytotoxic activity assays	138
2. Pharmacokinetic studies on Noscapine and selected nanoparticles:	139
2.1. Chromatographic conditions:	139
2.2. Method validation	139
i. Linearity	140
ii. Range	140
iii. Accuracy	141

List of	of contents	
iv. Precision2.3. Pharmacokinetics studies2.4. Statistical analysis	141 141 144	
3. Toxicity studies	144	
4. Hematological toxicity	145	
5. Histopathological analysis	145	
RESULTS & DISCUSSION	147	
1. Cell cytotoxicity	147	
2. Pharmacokinetic studies on Noscapine and selected nanoparticles	150	
2.1. HPLC analytical method validationi. Range and linearityii. Accuracyiii. Precision	150 150 150 150	
2.2. Pharmacokinetics studies	154	
3. Toxicity studies	166	
4. Hematological toxicity	169	
5. Histopathological Analysis	172	
CONCLUSIONS SUMMARY REFERENCES ARABIC SUMMARY	179 181 193 V	

List of abbreviations LIST OF ABBREVIATIONS

¹ H-NMR	Proton -nuclear magnetic resonance
3-D	Three dimensional
AFM	Atomic force microscopy
ANN	Artificial neural network
ANOVA	Analysis of variance
AUC	Area under the curve
bFGF	basic fibroblast growth factor
CCC	Critical coagulation concentration
CDCl ₃	Deuterated chloroform
Cmax	Maximum drug concentration in Plasma
CV %	Percent coefficient of variation
DCM	Dichloro methane
DI	Deionized
df	Degree of freedom
DLS	Differential light scattering
DNA	Deoxy ribonucleic acid
EE%	Entrapment efficiency
EPR	Enhanced permeation and retention
FDA	Food and Drug Administration
GBM	Glioblastoma
GPC	Gel permeation chromatography
GRAN	Granulocytes
h	Hours
H&E	Hematoxylin and Eosin
HPLC	High performance liquid chromatography
HPMA	N-(2-hydroxypropyl) - methacrylamide copolymer
i.v.	Intra-venous
IC ₅₀	Inhibitory concentration 50%
ICH	The international conference on harmonization

List of abbreviations

IS	Internal standard
kDa	Kilo Dalton
kHz	Kilo Hertz
LD50	Lethal dose 50%
LYMPH	Lymphocytes
m	Meter
Μ	Molar
mg	Milligram
MHz	Mega Hertz
MID	The mid-cell fraction
min	Minutes
mL	Milliliter
mM	Millimolar
mPEG	Methoxy poly ethylene glycol
MRT	Mean residence Time
MSE	Mean square error
mV	Millivolt
MW	Molecular weight
mW	MilliWatt
Ν	Newton
ng	Nanogram
nm	Nanometer
PBS	Phosphate buffer saline
PCA	poly- (cyanoacrylate)
PCL	Poly (E-caprolactone)
PDI	Poly dispersity index
PEG	Poly ethylene glycol
PLA	Poly lactide
PLG	Poly (D.L-glycolide)
PLGA	Poly(lactide-co-glycolide)
ppm	Part per million
\mathbb{R}^2	The correlation coefficient

List of abbreviations

RES	Reticuloendothelial system
rpm	rotation per minute
S	Second
SD	Standard deviation
t _{1/2}	Half-life
TEM	Transmission electron microscopy
THF	Tetra hydro furan
US	The United States
USA	The United States of America
UV/VIS	Ultraviolet / visible
VEGF	Vascular endothelial growth factor
λ_{max}	Wave length maximum
μg	Microgram
μL	Microliter

List of tables

LIST OF TABLES

Table No.	Table name	page
1	Recent applications of Poly ethylene glycol and poly lactide, or poly ethylene glycol and poly caprolactone in drug delivery.	18
2	Previous studies on Noscapine loaded nanoparticles	24
3	Composition of reaction mixtures used for the synthesis of block copolymers.	36
4	The molecular weight and ratio of PEG:PLA or PEG:PCL of block copolymers used in the preparation of nanoparticles.	67
5	Particle size, poly dispersity index (PDI) and zeta potential of prepared nanoparticles.	70
6	ANOVA test results for comparing the particle sizes of nanoparticles obtained from different ratios of polymer to Noscapine	71
7	Noscapine entrapment efficiency (EE %) of prepared nanoparticles.	74
8	ANOVA test results for comparing Noscapine entrapment efficiency (EE %) obtained from different polymer to Noscapine ratios.	75
9	Recovery data for Noscapine using the specified HPLC method.	84
10	Within-day repeatability of the specified HPLC method for Noscapine determination.	85

List of table		bles
Table No.	Table name	page
11	Inter-days intermediate precision of the specified HPLC method for Noscapine determination.	85
12	In-vitro release of Noscapine from nanoparticles (NOS-P3, NOS-P9 and NOS-P10) with polymer to drug ratio (5:1) at pH 7.4 and 4.5.	87
13	Particle size, zeta potential and entrapment efficiency of Noscapine containing nanoparticles (NOS-P3, NOS-P9 and NOS-P10) with polymer to drug ratio (5:1) after 3 months of refrigeration with periodic assessment.	92
14	Input variables for the experiments performed with poly ethylene glycol and poly lactide copolymers (Training, validation and test data sets)	104
15	Input variables for the experiments performed with poly ethylene glycol and poly caprolactone copolymers (Training, validation and test data sets)	105
16	The observed and predicted particle size of poly ethylene glycol and poly lactide copolymers nanoparticles in "training", "validation" and "test" data.	111
17	Relative contribution of input variables on particle size of poly ethylene glycol and poly lactide copolymers nanoparticles	113

List of tal		bles
Table No.	Table name	page
18	The observed and predicted particle size of poly ethylene glycol and poly caprolactone copolymers nanoparticles in "training", "validation" and "test" data.	116
19	Relative contribution of input variables on particle size of poly ethylene glycol and poly caprolactone copolymers nanoparticles	118
20	The observed and predicted drug entrapment efficiencies within poly ethylene glycol and poly lactide copolymers nanoparticles in "training", "validation" and "test" data.	121
21	Relative contribution of input variables on Noscapine entrapment efficiency within poly ethylene glycol and poly lactide copolymers nanoparticles.	124
22	The observed and predicted Noscapine entrapment efficiencies within poly ethylene glycol and poly caprolactone copolymers nanoparticles in "training", "validation" and "test" data.	127
23	Relative contribution of input variables on Noscapine entrapment efficiency within poly ethylene glycol and poly caprolactone copolymers nanoparticles.	129
24	Determination of cell cytotoxicity of Noscapine solution, NOS-P3 nanoparticles, NOS-P9 nanoparticles and NOS-P10 nanoparticles.	148

	List of ta	iles
Table No.	Table name	page
25	Recovery data for Noscapine from spiked rat plasma using the specified HPLC method.	152
26	Within-day repeatability of the specified HPLC method for Noscapine determination in rat plasma.	153
27	Inter-days intermediate precision of the specified HPLC method for Noscapine determination in rat plasma.	153
28	Noscapine concentrations in plasma of rats receiving i.v. NOS-P3 nanoparticles with polymer to drug ratio (5:1) (group 1)	159
29	Noscapine concentrations in plasma of rats receiving i.v. NOS-P9 nanoparticles with polymer to drug ratio (5:1) (group 2)	160
30	Noscapine concentrations in plasma of rats receiving i.v. NOS-P10 nanoparticles with polymer to drug ratio (5:1) (group 3)	161
31	Noscapine concentrations in plasma of rats receiving i.v. Noscapine solution (group 4)	162
32	Mean Noscapine concentrations of groups $(1 - 4)$ in plasma of rats	163
33	Pharmacokinetic parameters of Noscapine in rat plasma after i.v. injection of nanoparticles (NOS-P3, NOS-P9 and NOS-P10) with polymer to drug ratio (5:1) and Noscapine solution.	165