Comparing the effect of fluoride containing remineralizing agents and Er: YAG laser on enamel Demineralization and surface microhardness around Orthodontic Brackets (An In vitro study)

Thesis

Submitted to Faculty of Dentistry Ain-Shams University

In Partial Fulfillment of the Requirement of the Master Degree

(Pediatric Dentistry)

BY

Aya Fahim Abdel Aziz

(B.D.S 2010) Ain Shams University

Faculty of Dentistry Ain Shams University 2017 **Supervisors**

Dr. Amr Mahmoud Abdel Aziz

Professor and Head of Pediatric Dentistry and Dental Public Health Department

> Faculty of Dentistry Ain Shams University

Dr. Gehan Gaber Allam

Lecturer of Pediatric Dentistry and Dental Public Health Department

Faculty of Dentistry Ain Shams University

Major General Dr. Mohamed Gomaa Abd Alla

Consultant of Orthodontic Dentistry Chief, Dental Officer of the Egyptian Armed Forces

Acknowledgement

I would like to express my utmost gratitude and deep appreciation to *Dr. Amr Mahmoud Abd El-Aziz*, Professor of Head and Pediatric Dentistry and Dental Public Health Department, Faculty of Dentistry, Ain Shams University for his supervision, guidance and valuable efforts that will never be forgotten.

I would like to express my extreme thanks, deepest gratitude and most sincere appreciation to *Dr. Gehan Gaber Ibrahim*, Lecturer of Pediatric Dentistry and Dental Public Health Department, Faculty of Dentistry, Ain Shams University for her great efforts, valuable advices, support and guidance throughout the course of this research.

I gratefully thank *Dr. Mohamed Gomaa Abd Alla*, Major General, Consultant of Orthodontic Dentistry Chief, Dental Officer of the Egyptian Armed Forces for his continuous support and guidance.

I would like to express thanks and appreciation to *Dr. Mahmoud Eid Soliman*, Associated Professor of Pharmaceutical and Industrial Pharmacy Department, Faculty of Pharmacy, Ain Shams University for his great help and valuable time.

Personal thanks to *Dr. Raafat Hassan Riad*, Major General, Consultant of Oral and Maxillofacial Surgery, Head of Specialized Military Dental Hospital Kobry El-Kobba Medical Complex for his valuable support and time.

I would also like to thank all staff members of Pediatric Dentistry and Public Health Department, Faculty of Dentistry, Ain Shams University.

Dedication

This work is humbly dedicated to all my valuable treasures in life:

To my wonderful mother and father who are always there for me, giving me the strength to carry on.

I don't know what I would have done without you.

To my loving husband Mohamed, for his patient, love, friendship, humor and willingness to eat out.

Love him endless thanks and gratitude.

To my adorable son Amr for giving me this kind of love that people freely die for.

I wish I make you proud of me someday.

To my lovely sisters Amal and Amira

To my brother Mohamed my backbone and lifetime supporter

To my gorgeous nieces Hajer, Mayar, Mariam, Lamar and Celia.

To my mother, father and sister in low.

And at last but not the least to my dearest friends and colleagues.

وَمَا تَوْفِيهِي إِلَّا بِاللَّهِ عَلَيْهِ تَوَكَّنْ وَالَيْهِ أَنِيبُ

سورة هود ، آية 88

LIST OF CONTENT

	Title	Page no.
•	List of abbreviations	I
•	List of tables	IV
•	List of figures	V
٠	Introduction	1
•	Review of Literature	3
•	Aim of the Study	28
•	Materials and Methods	
•	Results	42
•	Discussion	59
•	Summary	67
٠	Conclusion	
•	Recommendation	
•	References	

LIST OF ABBREVIATION

Abbreviation	Abbreviation for
WSLs	White Spot Lesions
Er: YAG	Erbium-doped Yttrium Aluminium Garnet
Er, Cr: YSGG	Erbium, Chromium: Yttrium Scandium Gallium Garnet
%	Percentage
NaF	Sodium Fluoride
fTCP	Functional Tricalcium Phosphate
НА	Hydroxyapatite
Ca	Calcium
PO ₄	Phosphate
ОН	Hydroxyl group
FA	Fluorapatite
CaF ₂	Calcium Fluoride
CaF ⁺	Bound Calcium Fluoride
α-TCP Ca3(PO4)2	Tricalcium Phosphate
CPP-ACP	Casein PhosphoPeptide- Amorphous Calcium Phosphate
АСР	Amorphous Calcium Phosphate

LIST OF ABBREVIATION (Cont.....)

Abbreviation	Abbreviation for
CO ₂ laser	Carbon dioxide laser
US	United State
FDA	Food and Drug Administration
μm	Micrometer
nm	Nanometer
ERL	Er: YAG Lasers
micro-CT	micro-Computed Tomography
LICP	Laser-Induced Caries Prevention
SMH	Surface Microhardness
PLM	Polarized Light Microscope
SEM	Scanning Electron Microscopy
°c	Celsius degree
S	Second
Mm	Millimeter
CaCl ₂	Calcium Chloride
NaHCO ₃	Sodium Bicarbonate

LIST OF ABBREVIATION (Cont....)

Abbreviation	Abbreviation for
NaH ₂ PO ₄	Sodium Phosphate monobasic
mmol/L	Millimole per liter
Hz	Hertz
mJ	Millijoule
μs	Microsecond
g	Gram
HV	Vickers Hardness
ANOVA	Analysis of Variance
SPSS- V17	Statistical Package for the Social Sciences Version 2017
SD	Standard Deviation

LIST OF TABLES

Table no	Title	Page
Table (1):	Materials used	no 29
Table (2):	Sample grouping	34
Table (3):	Multiple comparisons of surface microhardness values of specimens after 14 days	42
Table (4):	Multiple comparisons of surface microhardness values of specimens after 28 days	44
Table (5):	T-Test between surface microhardness values of the control group after 14 and 28 days	46
Table (6):	T-Test between surface microhardness values of the TCP group after 14 and 28 days	47
Table (7):	T-Test between surface microhardness values of the NaF group after 14 and 28 days	48
Table (8):	T-Test between surface microhardness values of the Er: YAG group after 14 and 28 days	48
Table (9):	Multiple comparisons of lesion depth measurements of specimens after 14 days	49
Table (10):	Multiple comparisons of lesion depth measurements of specimens after 28 days	51
Table (11):	T-Test between lesion depth measurements of the control group after 14 and 28 days	53
Table (12):	T-Test between lesion depth measurements of the TCP group after 14 and 28 days	54
Table (13):	T-Test between lesion depth measurements of the NaF group after 14 and 28 days	54
Table (14):	TUKEY'S Test between lesion depth measurements of the Er: YAG group after 14 and 28 days	55
Table (15):	Percentage of lesion depth change	56

LIST OF FIGURES

Fig. no.	Title	Page no.
Fig. (1):	TCP varnish (3M ESPE Clinpro [™] white varnish)	29
Fig. (2):	Sodium fluoride varnish (Voco Bifluoride 10 TM)	29
Fig. (3):	Sound premolars before bonding of orthodontic brackets	31
Fig. (4):	0.1% Thymol solution- Deionzed water	32
Fig. (5):	Sound premolars after bonding of orthodontic brackets- adhesive tap with a hole	32
Fig. (6):	Bonding agent	33
Fig. (7):	Plastic mold-acrylic resin-tooth in acrylic block	34
Fig. (8):	Er: YAG laser Key laser 1242 and mirror hand piece 2060	35
Fig. (9):	Er: YAG laser exposure, Application of TCP varnish and Application of NaF varnish	35
Fig. (10):	Artificial saliva, remineralizing solution and remineralizing solution	36
Fig. (11):	Separate bakers of remineralizing solution	37
Fig. (12):	Separate bakers of demineralizing solution	37

LIST OF FIGURES (Cont....)

Fig. no.	Title	Page no.
Fig(13):	Isomet low speed saw	39
Fig. (14):	Wilson Hardness Vicker tester, Buehler, USA	39
Fig. (15):	Polarized Light Microscope	41
Fig. (16):	Bar chart: Multiple comparisons of surface microhardness of subgroups 2 after 14 days	43
Fig. (17):	Bar chart: Multiple comparisons of surface microhardness of subgroup 2 after 28 days	45
Fig. (18):	Bar chart: T-Test between surface microhardness of group A (control) after 14 and 28 days	46
Fig. (19):	Bar chart: T-Test between surface microhardness of group B (TCP) after 14 and 28 days	47
Fig. (20):	Bar chart: T-Test between surface microhardness of group C (NaF) after 14 and 28 days	48
Fig. (21):	Bar chart: T-Test between surface microhardness of group D (Er: YAG) after 14 and 28 days	49
Fig. (22):	Bar chart: Multiple comparisons of lesion depth of subgroup 1 after 14 days	50
Fig. (23):	Bar chart: Multiple comparisons of lesion depth of subgroup 2 after 28 days	51
Fig. (24):	Bar chart: T-Test between lesion depth of group A (control) after 14 and 28 days	53
Fig. (25):	Bar chart: T-Test between lesion depth of group B (TCP) after 14 and 28 days	54

LIST OF FIGURES (Cont....)

Fig. no.	Title	Page no.
Fig. (26):	Bar chart: T-Test between lesion depth of group C (NaF) after 14 and 28 days	55
Fig. (27):	Bar chart: T-Test between lesion depth of group D (Er:YAG) after 14 and 28 days	56
Fig. (28):	Polarized light microscopy image of representative lesion from group A (control) after 14 days	57
Fig. (29):	Polarized light microscopy image of representative lesion from group B (TCP)after 14 days	57
Fig. (30):	Polarized light microscopy image of representative lesion from group C (NaF) after 14 days	57
Fig. (31):	Polarized light microscopy image of representative lesion from group D (Er: YAG) after 14 days	57
Fig. (32):	Polarized light microscopy image of representative lesion from group A (control) after 28 days	58
Fig. (33):	Polarized light microscopy image of representative lesion from group B (TCP) after 28 days	58
Fig. (34):	Polarized light microscopy image of representative lesion from group C (NaF) after 28 days	58
Fig. (35):	Polarized light microscopy image of representative lesion from group D (Er: YAG) after 28 days	58

Introduction

Enamel demineralization is particularly common problem during orthodontic treatment, and its treatment is one of the greatest challenges faced by clinicians. The presence of fixed appliances on tooth surfaces with brackets and bands makes it difficult to clean teeth, favor dental biofilm accumulation, in addition to increasing the prevalence of cariogenic bacteria.¹

Clinically, the demineralization sites are detected as opaque and porous white spot lesions (WSLs) that may compromise the final result of orthodontic treatment. Enamel demineralization around orthodontic brackets may be due to acid etching during bonding of brackets, cariogenic and sticky food, accumulation of food around brackets and bad oral hygiene.²

WSL is considered irreversible process of the tooth surfaces loss, so prevention of demineralization is extremely important during orthodontic treatment.^{3,4}

The risk of enamel demineralization can be prevented or reduced with various conventional methods including the application of remineralizing agents and different forms of fluoride treatments as well as contemporary treatments like laser irradiation. The most frequent method used in clinical practice today is the application of fluoride agents in various forms, which is a proven approach for promoting enamel remineralization.^{5,6,7}

Laser technology can be used in soft tissue surgery, caries prevention, caries diagnosis, cavity preparation, and endodontic treatment for children. Caries prevention procedures have used different laser systems such as Er:

1

YAG (Erbium-doped yttrium aluminium garnet) and Er, Cr: YSGG (erbium, chromium: yttrium scandium gallium garnet).⁸

It was reported that caries prevention provided by the one-time initial laser treatment to be comparable to daily fluoride treatment by a fluoride dentifrice.⁹

In recent years, researchers have tended to agree that fluoride varnishes offer an effective means of not only preventing caries, but also arresting early enamel lesions.^{10,11,12}

The clinical effects of fluorides depend on the chemical compounds utilized and the methods used to apply the fluoride ion to the surface of the tooth.¹³

Of the different concentrations and forms of fluoride used in varnishes, 5% of sodium fluoride (NaF) had emerged as one of the most popular form of fluoride varnish. Recently, a white 5% NaF varnish containing functional tricalcium phosphate (fTCP) has been introduced in the market (ClinproWhite varnish).^{14,15}