

Ain Shams University Faculty of Science Microbiology Department

STUDIES ON PROBIOTIC POTENTIAL OF DAIRY PROPIONIBACTERIA

Thesis

Submitted for the partial fulfillment

of the Degree of Master of Science

in

Microbiology

By

Nariman Ramadan Mohammed Hamouda

B. Sc. (Microbiology/ Chemistry) 2011

Microbiology Department Faculty of Science Ain Shams University

2017

Ain Shams University Faculty of Science Microbiology Department

STUDIES ON PROBIOTIC POTENTIAL OF DAIRY PROPIONIBACTERIA

By

Nariman Ramadan Mohammed Hamouda

B. Sc. (Microbiology/ Chemistry) 2011

Under the supervision of

Prof. Dr. Mohamed Khaled Ibrahim

Professor of Bacteriology Vice Dean of Education and Student Affairs, Faculty of Science Ain Shams University

Prof. Dr. Baher Abd El-khalek Effat Professor Emeritus of Dairy Microbiology, Dairy Science Department National Research Centre

Prof. Dr. Nayra Shaker Mehanna

Professor Emeritus of Dairy Microbiology, Dairy Science Department National Research Centre

Biography

Name:	Nariman Ramadan Mohamed Hamouda.
Date of	May 2011, Faculty of Science,
graduation:	Microbiology Department,
	Ain Shams University.
Degree awarded:	B.Sc. in Microbiology and Chemistry (2011)
	(Excellent with honor degree).
Occupation:	Specialist at Dairy Science Department,
	Food Industries and Nutrition Division,
	National Research Centre.

DECLARATION

This thesis is a presentation of my original work, wherever contributions of others are involved, every effort is maid to indicate this clearly with the reference to literature and acknowledgement of collaborative research and discussion.

Nariman Ramadan Mohamed Soliman

First and foremost I feel always indebted to **Allah**, the kindest and the most merciful.

The author wishes to express her appreciation and deep thanks to **Prof. Dr. Mohamed Khaled Ibrahim**, Professor of Bacteriology, Department of Microbiology and Vice Dean for Education and Student Affairs Faculty of Science, Ain Shams University for his sincere supervision, guidance, continuous encouragement and support during the whole study and presenting the thesis.

I am greatly indebted to **Prof. Dr. Baher Abd El-khalek Effat**, Professor of Dairy Microbiology, Dairy Science Department, National Research Centre, who suggested, planned, closely supervised and sincerely guided all steps of this study. The successful completion of this work was, to a large extent, the result of his continuous support, fruitful discussions and critical reviewing of the thesis.

I also wish to express my sincere gratitude to **Prof. Dr. Nayra Shaker Mehanna,** Professor Emeritus of Dairy Microbiology and Technology- Dairy Science Department, National Research Centre, for her supervision and encouragement through out the whole work and during the preparation of this thesis.

I am greatly indebted and truly thankful for **Professor Dr. Nabil F. Tawfik**, Professor Emeritus of Dairy Microbiology, Dairy Science Department, National Research Centre, for his help, encouragement and supervision

Many thanks are expressed to all my **professors, friends** and all **staff** of Dairy Science Department, National Research Centre and Microbiology Department, Faculty of Science, Ain Shams University.

Many warm thanks are expressed to my **father**, **mother** and **sister** for their unlimited patience during the various phases of accomplishment of this work.

Deep thanks for my husband **Dr. Ahmed Shalabi** for his moral support, patience and encouragement during the hard work.

Contents

CONTENTS

	Page No.
1. INTRODUCTION	1
Plan of work	4
2. LITREATURE REVIEW	5
2.1. Probiotics	5
2.1.1. Definitions of Probiotics	5
2.1.2. Criteria for the selection of probiotics	5
2.1.3. Dairy Propionibacteria used as probiotics	8
2.1.3.1. Acid and bile tolerance	11
2.1.3.2. Antibiotic resistance	12
2.1.3.3. Antimicrobial properties	13
2.1.3.4. Phenol resistance	15
2.1.3.5. Carbohydrate fermentation	15
2.1.3.6. Acid production	16
2.1.3.7. Exopolysaccharide production	16
2.1.4.Claimed beneficial properties of probiotic	
propionibacteria	17
2.1.4.1. Human health	17
2.1.4.1.1. Stimulation of immune system	18
2.1.4.1.2. Improvement of lactose digestion	19
2.1.4.1.3. Cholesterol lowering	19
2.1.4.1.4. Anticarcinogenic action	20
2.1.4.2. Nutraceutical production	21
2.2. Prebiotics	22
2.2.1. Definitions and characterization	22
2.2.2. Classification of prebiotics	23
2.2.2.1. Lactitol	24
2.2.2.2. Fructooligosaccharides (FOS)	24
2.2.2.3. Inulin	26
2.2.3. Health effects of Prebiotics	28
2.3. Synbiotics	29
2.3.1. Definition and characterization of Synbiotics	29
2.4. Protective culture	30
2.4.1. Definition of protective culture	30
2.4.2. Beneficial effects of protective culture	30
2.4.2.1. Anticancer effect	30
2.4.2.2. Antimicrobial effect	30
2.4.3. Protective cultures in the market	31

2.5. Application on use probiotics, prebiotics, synbiotics	
and protective culture in manufacturing functional soft	
cheese	
MATERIALS AND METHODS	
3.1. UF- milk retentate	
3.2. Skim milk powder	
3.3. Sodium chloride and calcium chloride	
3.4. Bile salts, phenol and antibiotics	
3.5. API 50 CH strips	
4.6. Prebiotics	
3.7. Microorganisms	
3.8. Media	
3.8.1. Yeast Extract Lactate Broth or Agar (YEL)	
3.8.2. MRS Agar	
3.8.3. M17 broth or agar	
3.8.4. Plate count agar medium	
3.8.5. Potato dextrose broth or agar	
3.8.6.Mueller–Hinton agar	
3.9. Evaluation of probiotic properties	
3.9.1 Acid tolerance	
3.9.2. Resistance to bile salts	
3.9.3. Antimicrobial activity	
3.9.4. Fermentation of carbohydrates	
3.9.5. Phenol Resistance	
3.9.6. Acid production	
3.9.7. Exopolysaccharide (EPS) production	
4.2.8. Antibiotic susceptibility	
3.10. Improvement of the probiotic potential of the	
selected propionibacteria	
3.10.1. Survival and viability of the selected	
Propionibacterium strains in the presence of different	
prebiotics	
3.10.2. Viability of the selected probiotic dairy	
Propionibacterium strains in different protective	
cultures	
3.11. Manufacturing of a functional dairy product (Soft	
cheese)	
3.11.1. Chemical analysis	
3.11.2. Microbiological Analysis	

3.11.3. Sensory evaluation properties	48 49
	49
4. RESULT	50
4.1. Evaluation of probiotic properties	50
4.1.1. Acid tolerance	50
4.1.2. Bile tolerance	56
4.1.3. Antimicrobial activity	60
4.1.4. Fermentation of carbohydrates	65
4.1.5. Phenol resistance	67
4.1.6. Acidification properties	70
4.1.7. Exopolysaccharide (EPS) production	72
4.1.8. Antibiotic susceptibility	12
4.2. Improvement of the problotic potential of the	77
selected	//
propionibacteria.	
4.2.1. Survival and viability of the selected	
propionibucierium strains in the presence of different	77
4.2.2 Visbility of the selected probiotic dairy	
Propionibactarium strains in different protective	
cultures	91
4.3 Manufacturing of a functional dairy product (Soft	
cheese)	97
4.3.1. Chemical analysis.	97
4.3.1.1. Chemical composition	97
4.3.1.2. Changes of soluble nitrogen content/ total	
nitrogen content (SN/ TN)	97
4.3.1.3. Changes in pH values	99
4.3.2 Microbiological Analysis	101
4.3.2.1. Total viable bacterial counts	101
4.3.2.2. Viability of Lactobacillus plantarum	103
4.3.2.3. Viability of Streptococcus thermophilius	103
4.3.2.4. Viability of <i>Propionibacterium</i> strains	103
4.3.2.5. Viability of coliform mold and yeast	104
4.3.3. Sensory evaluation	111
5. DISCUSSION	114
6. SUMMARY	128
7. REFERENCES	135

Contents

ARABIC SUMMARY.....

LIST OF TABLES

Table	Title	Page
No.		
2.1	Desirable properties of probiotic bacteria	7
2.2	Classification of prebiotics	23
3.1	Sources of <i>Propionibacterium</i> strains, indicator	36
	strains and lactic acid bacteria used in this study	
4.1	Tolerance of <i>Propionibacterium</i> strains to different	51
4.0	pH values during incubation at 30°C for 48 hrs.	5 0
4.2	Survival of the tested <i>Propionibacterium</i> strains in	58
	different concentrations of bile salts after incubation	
4.2	at 30 C for 48 nrs.	()
4.3	Antimicrobial activity of <i>Proplonibacterium</i> strains	02
1 1	Experimentation of different each objection of the 0	66
4.4	tested Propionibactorium strains using API 50CH	00
4.5	Survival of the tested Propionibacterium strains in	68
т.Ј	different concentrations of phenol after incubation at	00
	30°C for 48h	
4.6	Acid production by different tested	70
	Propionibacterium	
4.7	Exopolysaccharide production by different tested	72
	Propionibacterium	
4.8	Antibiotic resistance profiles of the tested	74,75
	Propionibacterium strains after incubation at 30 °C	
	for 48 hrs.	
4.9	Survival and viability of 8 probiotic	79,80
	Propionibacterium strains grown in skim milk	
	supplemented separately with 1% of 7 different	
	prebiotics after refrigerated at 7 °C for 30 days.	
4.10	Survival and viability of 8 probiotic	84,85
	Propionibacterium strains grown in skim milk	
	supplemented separately with 3% of 7 different	
4 1 1	prebiotics after refrigerated at / C for 30 days.	00.00
4.11	Survival and viability of 8 problotic	88,89
	<i>Propionibacterium</i> strains grown in skim milk	
	prebiotics after refrigerated at 7 °C for 30 days	
<u>/ 12</u>	Survival (log cfu/ ml) of 8 probiotic dairy	02
7.14	Propionibacterium strains in different protective	15
	cultures on veast extract lactate agar medium	