

Hypovitaminosis D Asilent Epidemic

Essay

Submitted to the Faculty of Medicine Ain Shams University in Partial Fulfillment for the Requirements of the Master Degree

> in Internal Medicine

By Shimaa Mohamed Abd Elattif M.B.B.Ch. Tanta University

Supervised by

Prof. Dr.

MOHAMED SALAH ELDIN ABDEL BAKY

Prof. of Internal Medicine Faculty of Medicine Ain Shams University

Prof. Dr.

DALIA FAYEZ MOHAMED

Prof. of Internal Medicine Faculty of Medicine Ain Shams University

Dr.

SAMAH ABD EL RAHMAN MAHMOUD

Ass. Prof. of Internal Medicine Faculty of Medicine Ain Shams University

> Faculty of Medicine Ain Shams University 2010

Acknowledgement Thanks to Allah

It is a pleasure to express my deepest gratitude to Prof. Dr. MOHAMED SALAH ELDIN ABDEL BAKY Professor of Internal Medicine, Faculty of Medicine, Ain Shams University, who very kindly and generously gave me much of his time and experience in helping, guiding and advising me.

Iam deeply indebted and grateful to Prof. Dr. **DALIA FAYEZ MOHAMED** Professor of Internal Medicine, Faculty of Medicine, Ain Shams University, for here enthusiastic help, kind supervision, endless support, critical review and encouragements throughout this work.

Sincere thanks to Dr. SAMAH ABD EL RAHMAN MAHMOUD Ass. Prof. of Internal Medicine, Faculty of Medicine, Ain Shams University, for her continuous interest and advice.

Finally, I would like to express my gratitude to **all members** of the department of Internal Medicine, Faculty of Medicine, Ain Shams University, for their encouragement, help and support all through this work.

Contents

Title	Page
Ist of abbreviations	П
Ist of Figures	Iv
Ist of tables	IX
© Introduction	1
Bone Structure	13
© Osteoporosis	22
© Rickets	57
🖙 Osteomalacia	94
Vitamin D.and other diseases	124
© Summary	143
The References	146
The Arabic Summary	-

List of Abbreviations

Abbreviation	Meaning
ADHR	Autosomal dominant hypophosphataemic rickets/OM
BMC	Bone mineral content
BMD	Bone mineral density
BMUs	Bone multicellular units
CVD	Cardiovascular disease
CYP27B1	The enzyme that produces 1-25(OH)2D3
DBP	Vitamin D binding protein
DXA	Dual energy X ray absorptiometry
FGF-23	Fibroblast growth factor-23
GC	Glucocorticoids
GIO	Glucocorticoids induced osteoporosis
HHRH	Hereditary hypophosphataemic rickets with hypercalciuria
HVDRR	Hereditary1-25Dihydroxyvitamin D-Resistant Rickets
IL	Interleukins
LBD	Ligand-binding domain
NT	Neurotrophins
25(OH)D	25-hydroxyvitamin D
1-25(OH)2 D3	1-25 dihydroxyvitamin D3
OHOM	Oncogenic hypophosphataemic OM
OM	Osteomalacia
OPG	Osteoprotegerin

List of Abbreviations:

Abbreviation	Meaning
	Phosphate regulating gene with
PHEX	homologies to Endopeptidases on the X-
	chromossome
PPIs	Proton pump inhibitors
РТН	parathyroid hormone
RANK	Receptor activator of nuclear factor kB
RANKL	Receptor activator of nuclear factor (NF)- κB ligan
RR	Relative risk
RXR	Retinoid X receptors
2ryHPT	Secondary hyperparathyroidism
TOCT	Peripheral Quantitative computed
pqc1	tomography
QCT	Quantitative computed tomography
QUS	Quantitative ultrasound
SD	Speed of sound
SERMS	Selective Estrogen Receptor Modulators
TGF	Transforming growth factor
TH	T helper
TLRs	Toll-like receptors
TNF	Tumour necrosis factor α
TPN	Total parenteral nutrition
UVB	Ultraviolet B
VDDR1	Vitamin D-dependent rickets type1
VDDR11	Vitamin D-dependent rickets type11
VDR	Vitamin D receptor
VDREs	Vitamin D-responsive elements
VDRR	Vitamin D resistant rickets
XLH	X linked hypophosphataemic rickets

List of Tables

No.	Title	page
1	Physiological Regulators of the Principal Enzymes in Vitamin D Metabolism.	7
2	Classification of osteoporotic types.	28
3	Comparison of Genetic Causes of Rickets.	74
4	A classification of the various forms of hypophosphataemic rickets.	74
5	The genetic abnormalities associated with the various forms of hypophosphataemic rickets.	75
6	various Types of Rickets with Clinical Features and Treatments.	93

List of Figures

No.	Title	page
1	Production of vitamin D2 and vitamin D3.	2
2	Structure of 1-25(OH)2D3 and the principal pathways for its production and metabolism.	6
3	The mechanismof action of 1-25(OH)2D3.	8
4	Illustrates how nuclear VDR mediates transcriptional activation by the vitamin D hormone.	9
5	The human vitamin D receptor (VDR) gene polymorphisms.	10
6	1-25(OH)2D3 and PTH stimulation of the mobilization of calcium from the skeleton.	11
7	Synthesis and metabolism of vitamin D in the regulation of calcium, phosphorus, and bone metabolism.	12
8	Diagram of bone illustrating compact cortical bone, osteons, lamellae, volkmann's canals, haversian canals, lacunae, canaliculi, and spongy bone.	15
9	Bone growth, development and turnover.	16
10	The RANKL/RANK/OPG system and osteoclast formation.	18

List of Figures

No.	Title	page
11	Bone remodeling on the surface of trabecular bone.	20
12	Osteoclastic differentiation and activation in estrogen deficiency.	25
13	Pathogenesis of Type I osteoporosis.	29
14	Pathogenesis of Type 11 osteoporosis.	31
15	Pathogenesis of Type III osteoporosis.	32
16	DXA examination of frontal lumbar spine.	40
17	Dual-energy x-ray absorptiometry (DXA) examination of proximal femur.	41
18	Diagnosis and management of osteoporosis.	56
19	Vitamin D and calcium deficiencies as a cause of rickets.	60
20	Endochondral ossification at the epiphyseal plate.	62
21	Nutritional handling of calcium, phosphorus, and vitamin D, and the causes of rickets.	64

No.	Title	page
22	Pathway of vitamin D Production showing types of rickets.	71
23	The photoproduction of vitamin D and the various biologic effects of 1,25(OH)2D on calcium, phosphorus, and bone metabolism.	79
24	Femoral and tibial bowing seen in rickets once the child is walking.	82
25	Wrist x-rays in a normal child (A) and a child with rickets (B). The child with rickets has metaphyseal fraying and cupping of the distal radius and ulna.	85
26	Radiograph of wrist showing Classic features of rickets.	85
27	Radiograph of tibial and femoral bowing due to bone softening in rickets.	86
28	Chest radiograph revealing rachitic rosary.	86
29	Regulation of serum Calcium and Phosphate levels.	96
30	Risk factors, biochemical changes and sequence of events in vitamin D deficiency-induced OM.	100
31	(A) Osteomalacia with wide osteoid seams (red) on top of mineralized bone (green).(B) As (A) but under polarized light to show osteoid lamellae.	101

No.	Title	page
32	Scoliotic deformity of the spine in patient with OM.	111
33	Ground-glass appearance demineralization and pseudofractures (arrowheads) observed in vitamin D deficiency-inducedOM. (A) Chilean patient fromPatagonia. (B) Patient with non-tropical sprue.	114
34	Diffuse demineralization similar to that observed in osteoporosis' in two patients with biopsy-proven OM. (A) Patient with chronic pancreatitis who also had osteoarthritis of her left hip and protrussio acetabuli of the right hip. (B) Bilateral transtrochanteric fractures in a patient with intestinal malabsorption due to systemic sclerosis.	115
35	Patient with vitamin D-dependent OM type II showing bilateral increased bone density of the first ribs.	116
36	Radiograph (A) and CT (B) of the left hip in a patient with familial hypophosphataemic OM showing areas of normal and increased bone density and a calcific enthesopathy (initially mis diagnosed as fluorosis).	118

No.	Title	page
37	The role of the different pathogenetic effectors in the etiology of diabetes, and the possible mechanisms through which vitamin D might prevent diabetes.	128
38	The immunomodulatory effects of $1\alpha, 25$ (OH)2D3. At the level of the antigen-presenting cell.	129
39	Regulation of immunity by 1,25(OH)2D.	133
40	Metabolism of 25-Hydroxyvitamin D to1,25-Dihydroxyvitamin D for Nonskeletal Functions.	136
41	Biochemical and clinical effects of low1,25-dihydroxyvitamin D availability on cardiac and vascular function	139

Introduction

Vitamin D : Is agroup of fat soluble prohormones There are 2 major forms of vitamin D. Cholecalciferol (vitamin D-3) is produced in the skin after sun exposure. It is produced commercially by extracting 7-dehydrocholesterol from wool fat followed by ultraviolet B (UVB) radiation and purification. The other one is Ergocalciferol (vitamin D-2) which has a different side chain than cholecalciferol (i.e., a C24 methyl group and a double bond betweenC22 and C23) (figure 1) and is commercially made by the action of UVB radiation on the plant and then purifying the ergosterol extracted from yeast. (*Holick, 2005*).

The precursor provitamin D (either ergostrol or 7-dehydrocholesterol), Which is relatively rigid, 4-ringed structure, is incorporated into the lipid bilayer of the plasma membrane. During the production of previtamin D during exposure to solar UVB radiation, the B ring opens and becomes a less-rigid open structure (figure 1), which may provide the membrane with increased permeability to various ions, including calcium. (*Holick, 2004(b)*).

During exposure to sunlight, UVB photons (290-315nm) penetrate in to the viable epidermis and dermis where they are absorbed by 7-dehydrocholesterol that is present in the plasma membrane of these cells. The absorption of UVB radiation cause 7-dehydrocholesterol to open its B ring, forming precholecalciferol. Precholecalciferol is inherently unstable and rapidly undergoes rearrangement of its double bonds to form cholecalciferol (figure 1). As cholecalciferol is being formed, it is ejected out of the plasma membrane in to the extracellular space, where it enters into the dermal capillary bed, drawn in by the vitamin D binding protein (DBP). (*Bouillon, 2001*).

Figure (1) : Production of vitamin D2 and vitamin D3. (Adapted from Bikle, 2009).

Sources of vitamin D :

Synthesis of vitamin D in the skin by sun light :

Solar UVB irradiation is the primary source of vitamin D (other than diet supplements). For most people, When atmospheric conditions are ideal and skin is clear, 30 minutes of whole-body exposure of pale skin to sunlight without clothing or sun screen can result in the synthesis of between 10,000 and 20,000 IU of vitamin D. These quantities of vitamin D are large, and therefore capable of supplying the body's full needs. (*Adams and Hollis, 2002*).

At the same time, the body has two mechanisms to prevent an excess of vitamin D from developing : first, further irradiation converts excess vitamin D in the skin to a variety of inactive metabolites; second, the pigment melanin begins to accumulate in skin tissues after the first exposure, which decreases the production of vitamin D. (*Hollis, 2005*).

Dietary sources of vitamin D :

Fortified foods are the major dietary sources of vitamin D. The foods that require fortification with vitamin D are milk and margarine. (*Stene et al., 2003*).

In the case of milk, fluid milk contain added vitamin D in such an amount that a reasonable daily intake of the milk contains not less than 300 IU and not more than 400 IU of vitamin D. (*Calvo et al., 2004*).

Fortification of milk with vitamin D may not be adequate for satisfying the vitamin D requirement because of variability in vitamin D content after fortification and because many persons have milk allergy or lactose intolerance. Additional foods need to be fortified with vitamin D. (*Zeiger, 2000*).

Fluid milk is labeled as providing 44% of the recommended daily intake (of 400 IU) per 250-mL serving. Other milk products that require vitamin D fortification are evaporated milk, powdered milk, and goat's milk. The proliferation of milks of plant origin (particularly soy) made it necessary to require calcium-fortified, plant-based milks to be fortified with vitamin D. (*Calvo et al., 2004*).

All margarines are fortified with vitamin D (530 IU/100 g) Other foods for which vitamin D addition is permitted are meal replacements, nutrational supplements, and formulated liquid diets. (*Tangpricha, 2003*).

Fortification of orange juice with calcium was introduced, making orange juice a potential good source of calcium for children and adults who do not drink milk . (*Tangpricha*, 2003).