

KNOWLEDGE DISCOVERY WITH ARTIFICIAL NEURAL NETWORKS

A Thesis submitted to the Department of Computer Science, Faculty of Computer and Information Sciences, Ain Shams University

In partial fulfillment of the requirements for the degree of Master in Computer and Information Sciences

BY

Ayad Fekry Ayad

B.Sc. in Computer Science Demonstrator, Computer Science Department Faculty of Computer and Information Sciences Ain Shams University

Under the Supervision of

Prof. Dr. Abdel-Badeeh Mohamed Salem

Prof. Of Computer Science, Computer Science Department, Faculty of Computer and Information Sciences Ain Shams University

Prof. Dr. Mostafa Mahmoud Syiam

Professor and Head of Computer Science Department, Vice Dean for Student affairs Faculty of Computer and Information Sciences Ain Shams University

2004

Acknowledgments

My utmost thanks to ALLAH for all his gifts in all my life.

My gratitude should go to Prof. Mohammed Said Abdel-Wahab, Dean of the faculty of Computer and Information Sciences, for his valuable support.

My greatest thanks go to Prof. Abdel-Badeeh Salem and Prof. Mostafa Syiam for their teaching, supporting, guiding and encouragement they provide me throughout my work. Their comments and suggestions helped me not only in this thesis, but also in my career. They have suffered a lot with me since it is my first step in research studies. They taught me how to read and write a paper and how to conduct experiments and analyze the results.

I would like to thank my fathers Kerolous and Marqus for helping and supporting me to complete this thesis.

Special Thanks to Mr. Tamer Mustafa who helped me during writing this thesis.

Thanks are not enough to be given to my parents. Rather, there are no words that are valuable to equalize their love and support for me. They are behind any success in my life.

Table of Contents

			Page
1	Intr	oduction	1
	1.1	Motivations & Objectives	5
	1.2	Contribution	6
	1.3	Thesis Organization	7
2	Kno	wledge Discovery And Data Mining	9
	2.1	Data Mining and Information Age:	
		Emerging Quests	9
	2.2	Defining Knowledge Discovery	10
	2.3	Architectures Of Knowledge Discovery	13
	2.4	Business Understanding	17
	2.5	Data Understanding	20
	2.6	Data Preparation	22
		2.6.1 Data Cleaning	23
		2.6.2 New Features	25
		2.6.3 Transformations	26
		2.6.4 Prepared Information Environment	27
	2.7	Modeling	28
			28
		2.7.1 Modeling Tools	34
			35
		2.7.2 Model Assessment	36
	2.8	Evaluation	37
			41

vi

2	2.9	Deployment	43
			47
2	2.10	Fundamental Issues In	
		Knowledge	49
		Discovery	49
			51
2	2.11	Tasks Of Data Mining	54
			58
2	2.12	Examples Of Knowledge	64
		Discovery Systems	66
2	2.13	Summary	68
			68
			70
S	Self-(Organizing Map (SOM)	71
3	8.1	SOM Structure	72
			78
3	3.2	Basic SOM Training Algorithm	
			80
3	8.3	Mathematical Treatment and Properties	
3	8.4	SOM Visualization	81
3	8.5	Variants of SOM	81
3	8.6	Related Algorithms to SOM	
3	8.7	Data Analysis Using SOM	83
		3.7.1 Quantization	85
		3.7.2 Projection	
		3.7.3 Benefits and Pitfalls	89
3	8.8	Using SOM in Data Mining	
3	8.9	Summary	94
			95

4	The	The Proposed Modification To Traditional	
	SON	A Training Algorithm	
	4.1	Feature Maps	102
	4.2	Kohonen Self-Organizing	102
		Feature Maps	
	4.3	Disadvantages Of The Basic	105
		SOM	108
		Training Algorithm	108
	4.4	The K-Means Algorithm	110
			115
	4.5	The Proposed K-Means	117
		Initialization For	118
		SOM Training Algorithm	
	4.6	Complexity Analysis Of The	119
		Proposed	120
		Approach	
			120
	4.7	Experimental Results &	
		Discussion	122
	4.8	Summary	122
			124
5	The	Proposed Growing Hierarchical SOM	125
	(GH	(SOM) For Document Clustering	126
	5.1	Introduction	
			129
	5.2	Overview On Dynamic Neural	
		Network	134

viii

	Models	
		148
5.3	The Growing Hierarchical SOM	148
	(GHSOM)	
	5.3.1 The principles	159
		167
	5.3.2 GHSOM Training	
	Algorithm	
	5.3.3 Analysis Of	
	GHSOM	
	Characteristics	
5.4	Data Set	
	5.4.1 Document	
	Preprocessing	
	5.4.2 Generating	
	Characteristic	
	Document	
	Vectors	
5.5	Experimental Results &	
	Discussion	
	5.5.1 A SOM Of ICICIS	
	Abstracts	
	Collection	
	5.5.2 A GHSOM Of	
	ICICIS Abstracts	

Collection		
5.5.2.1	D	
	e	
	e	
	р	
	H	
	i	
	e	
	r	
	a	
	r	
	c	
	h	
	У	
	••••	
	•••	
	•	
	•	
5.5.2.2	S	
	h	
	а	
	1	
	1	
	0	
	W	

		Н
		i
		e
		r
		a
		r
		с
		h
		у
		<u>.</u>
		5.5.3 Comparison Of
		SOM and GHSOM
		Representation
5	5.6	Summary
6 S	Sumn	nary, Conclusions And Future Work
Refere	nces	
Appen	dix A	: Implementation Code In C++
A	A .1	SOM Training Algorithms
A	A.2	Proposed Modification to SOM Training
	_	Algorithms
A	A.3	GHSOM Training Algorithms

List Of Figures

Figure

Page

2.1	A general scheme of knowledge discovery	13
2.2	Main functional phases of the knowledge	
	discovery process	14
2.3	(a) CRISP-DM: process model for data mining	
	(b) Brachman's KDD process and	
	(c) Pyle's model-building outline. Both of the	
	latter process models have been simplified	17
2.4	Relation of domain knowledge, data and the	
	problem	18
2.5	PIE in information flow	27
3.1	Neighborhoods (size 1, 2 and 3) of the unit	
	marked with black	50
3.2	Updating the best matching unit (BMU) and its	
	neighbors	52
3.3	The two basic neighborhood functions	53
3.4	(a) A topologically good,	
	(b) A folded 1-dimensional SOM	57
3.5	Component planes representation of a SOM	
	in	59
	2D (a) and 3D (b)	
3.6	U-matrix presentations of a SOM:	
	shades of gray (a) and 3D mesh (b)	60
3.7	Sammon's projection of a SOM	61
3.8	Measurements from a computer system from two	

xii

	days depicted as a data set histogram	62
3.9	Trajectory plotted on top of the u-matrix of a	
	SOM. The arrows show the consecutive BMUs	63
3.10	Visualization of quantization errors of two input	
	vectors	63
3.11	Data analysis using SOM as an intermediate step	68
3.12	Using SOM in data mining	73
4.1	Pattern classes that are evident by proximity	85
4.2	An example of the procedure involved in the first	
	step	91
4.3	An example of the procedure involved in the	
	second step	92
4.4	The assignment of layers In an N x N network	93
4.5	The whole procedure to arrange N ² cluster centers	93
4.6	810 2-D data samples generated using	
	DDA line algorithm	95
4.7	The resultant feature maps constructed by the two	
	methods for 810 data set: left column is method 1	
	(conventional), and right column is method 2	
	(proposed)	97
4.8	The resultant calibrated maps constructed by the	
	two methods for the iris data set: left column is	
	method 1 (conventional), and right column is	
	method 2 (proposed)	98
4.9	Avg.quantization error by the two methods for 810	
	data samples	100
4.10	Avg.quantization error by the two methods for iris	
	data samples	100
5.1	Architecture of a trained GHSOM	110

.

5.2	Insertion of units: A row (a) or a column		
	(b) of units (shaded gray)	114	
5.3	Document preprocessing and encoding	119	
5.4	5 <i>x</i> 6 SOM of the ICICIS conference	121	
5.5	Top and second level maps		
	(a) Layer 1 map: 4x3 units; Main topics		
	(b) Layer 2 map: 2x2 units; Knowledge discovery	123	
5.6	Layer 1 map: 5x4 units (shallow hierarchy)	124	

List Of Tables

Table

Page

4.1	The looking up table. Only upper triangle	
	need to be computed	93
4.2	Learning parameters of the first data set	96
4.3	Learning parameters of the second data set	99

xvi

List of Publications

 Abdel-Badeeh M. Salem, Mostafa M. Syiam, and Ayad F. Ayad "Improving Self-Organizing Feature Map (SOFM) Training Algorithm Using K-means initialization" In Proc. 5th International Conference on Enterprise Information Systems ICEIS, vol.1, 2003, pp.399-405, France.

Published also in Proc. 7th IEEE International Conference On Intelligent Engineering Systems (INES), vol.40, 2003, pp.41-46. Egypt.

- Abdel-Badeeh M. Salem, Mostafa M. Syiam, and Ayad F. Ayad "A Hybrid Dynamic Self-Organizing Map For Clustering Of Document Collections" In Proc. 2nd WSEAS Intern. Conf. on ARTIFICIAL INTELLIGENCE, KNOWLEDGE ENGINEERING, and DATA BASES (AIKED 2003), vol.2, 2003, pp.201-206, Greece.
- Abdel-Badeeh M. Salem, Mostafa M. Syiam, and Ayad F. Ayad "Unsupervised Artificial Neural Networks For Clustering Of Document Collections" The 17th International FLAIRS Conference, 2004, USA.

Accepted also for publication in 6th International Conference on Enterprise Information Systems ICEIS, 2004, France.

V

Abstract

Data mining is a part of a large area of recent research in artificial intelligence and information management. The purpose is to find new knowledge from databases where the dimensionality, complexity, or amount of data is prohibitively large for manual analysis. A large data set may be of very high dimensionality and consists of complex structure that even the most well planned data mining techniques might have difficulty extracting meaningful patterns from it. An unsupervised technique such as cluster detection becomes useful in such situations.

Clustering is a useful tool when it is used to deal with a large complex data set with many variables and unknown internal structure. In such situations, clustering would be the best tool to obtain an initial understanding of the structure inherent in the data. Once automatic cluster detection has discovered regions of the data space that contains similar records, other data mining tools and techniques could be used to discover rules and patterns within the clusters.

The Self-Organizing Map (SOM) has been used as a tool for mapping high-dimensional data into a one- (or two-) dimensional feature map. It is then possible to visually identify the clusters from the map. The main advantage of such a mapping is that it would be possible to gain some idea of the structure of the data by observing the map, due to topology preserving nature of the SOM.

Usually, SOM can be initialized using random values for the weight vectors. In this thesis we present a different approach for initializing SOM. This approach depends on the K-means algorithm as an initialization step for SOM.

i