Immunohistochemical Study of Protein Gene Product 9.5 and Single Strand DNA in Generalized and Segmental Vitiligo

Thesis
Submitted for the partial fulfillment of MD degree in Dermatology, Venereology & Andrology

By
Mohamed Hussein Hatem Abdel Rahman Abou Hadeed
(MB. B. CH., M.Sc.)

Under supervision of

Prof. Dr. Nader Fouad Ragab
Professor of Dermatology, Venereology & Andrology
Faculty of Medicine-Ain Shams University

Prof. Dr. Nehal Mohamed Zu El-Fakkar
Professor of Dermatology, Venereology & Andrology
Faculty of Medicine-Ain Shams University

Prof. Dr. Nafissa Mohamed Amin El-Badawy
Professor of Pathology
Faculty of Medicine-Ain Shams University

Prof. Dr. Hany Mohamed Ezz El-Din El-Nazer
Professor in Dermatology, Venereology & Andrology
Research Department-National Research Center

Prof. Dr. Mahmoud Fawzy Abdel Hamid
Professor of Dermatology, Venereology & Andrology
Research Department-National Research Center

Faculty of Medicine-Ain Shams University
2015
Acknowledgements

First I thank “God” for granting me the power to proceed and to accomplish this work.

I would like to express my endless gratitude and appreciation to **Prof. Dr. Nader Fouad Ragab**, Professor of Dermatology, Venereology & Andrology, Faculty of Medicine-Ain Shams University, for giving me the honor of working under his supervision and providing me a lot of encouragement throughout this work and always.

I do appreciate the kind and active participation of **Prof. Dr. Nafissa Mohamed Amin El-Badawy**, Professor of Pathology, Faculty of Medicine-Ain Shams University.

I would like to acknowledge my profound gratitude to **Prof. Dr. Hany Mohamed Ezz El-Din El-Nazer**, Professor in Dermatology, Venereology & Andrology Research Department-National Research Center, for his helpful guidance and kind instructions during all the work in order to come in this form.

My sincere thanks to **Prof. Dr. Nehal Mohamed Zu El-Fakkar**, Assistant professor of Dermatology, Venereology & Andrology, Faculty of Medicine-Ain Shams University, for her cooperation and useful instructions.

Words would fail me in trying to thank **Prof. Dr. Mahmoud Fawzy Abdel Hamid**, Assistant professor of Dermatology, Venereology & Andrology Research Department-National Research Center for his detailed and constructive comments, and for his important support throughout this work.

I am really grateful to my **Mother, Father and Sisters** for their support and encouragement.
LIST OF CONTENTS

- List of Abbreviations ... i
- List of Tables .. iii
- List of Figures .. iv
- I. Introduction and Aim of the Work .. 1
- II. Review of Literature .. 4
 - Chapter A. Vitiligo ... 4
 1- Definition .. 4
 2- Epidemiology ... 5
 3- Precipitating factors ... 5
 4- Overview of melanocytes and melanogenesis 7
 5- Pathogenesis of vitiligo .. 8
 6- Genetics of vitiligo .. 42
 7- Clinical features ... 44
 a. Clinical variants ... 45
 b. Clinical classification of vitiligo 46
 8- Systemic associations .. 49
 9- Pathology ... 53
 10- Diagnosis and differential diagnosis 58
 11- Treatment of vitiligo ... 59
 - Chapter B. ProteinGene Product 9.5 73
 - Chapter C. Single Strand DNA ... 75
- III. Patients and methods ... 77
- VI. Results .. 85
- V. Discussion .. 105
- VI. Summary .. 119
- VII. Conclusion and recommendations 123
- VIII. References .. 126
- Arabic summary
LIST OF ABBREVIATIONS

4-TBP: 4-tertiary butylphenol
5-MOP: 5-methoxypsoralen
8-MOP: 8-methoxypsoralen
AD: Anno Domini
ADCC: Antibody dependant cell mediated cytotoxicity
AISL: Autoimmune susceptibility locus
APC: Antigen presenting cell
Bax: B cell lymphoma-2 associated X protein
BC: Before Christ
BCL2: B cell lymphoma-2
bFGF: basic fibroblast growth factor
C: Complement
CAT: Catalase gene
CD: Cluster of differentiation
cDNA: Complementary DNA
CGRP: Calcitonin gene related peptide
CLA: Cutaneous lymphocyte associated antigen
COMT: Catechol-O-methyl transferase
CTLA: Cytotoxic lymphocyte antigen 4
DHICA: 5,6-Dihydroxyindole-2-carboxylic acid
EDTA: Ethylenediaminetetraacetic Acid
EGM: Extra cellular granular material
ET Endothelins
FGF: Fibroblast growth factor
H2O2: Hydrogen peroxide
H&E: Haematoxylin and Eosin
HCV: Hepatitis C virus
HIV: Human immune deficiency virus
HLA: Human leucocytic antigen
ICAM: Intracellular adhesion molecule
IDDM: Insulin dependent diabetes mellitus
IKP: Isomorphic Koebner phenomenon
IL: Interleukin
INF: Interferon
KDa: Kilo Dalton
KUVA: Khellin plus UVA
LAK: Lymphokine activated killer cell
LC: Langerhans’ cells
LSAB: Labeled StreptAvidin Biotin
MAO: Monoamino oxidase
MBEH: Monobenzyl ether of hydroquinone
MCHR: Melanin concentrating hormone receptor
MHC: Major histocompatibility complex
MITF: Microphthalmia-associated transcription factor
MSH: Melanocyte-stimulating hormone
NGF: Nerve growth factor
NK: Natural killer cell
NPY: Neuro peptide Y
PBS: Phosphate Buffered Saline
PGP 9.5: Protein gene product 9.5
ROS: Reactive oxygen species
SCF: Stem cell factor
ssDNA: Single stranded DNA
TAP1: Transporter associated with antigen-processing
TCR: T-cell receptor
TGFβ1: Transforming growth factor β
Th: T helper cell
TiO2: Titanium dioxide
TNF: Tumor necrosis factor
TRP: Tyrosinase related protein
VKHS: Vogt-Koyanagi-Harada syndrome
LIST OF TABLES

Table (1):	Pros and cons for different hypotheses (neuronal, somatic mosaicism and microvascular skin homing) for segmental vitiligo, and possible causes for melanocyte destruction	28
Table (2):	Types of vitiligo	46
Table (3):	Segmental versus non segmental vitiligo	48
Table (4):	Reported disorders coexisting with vitiligo	52
Table (5):	Description of personal data among study cases	85
Table (6):	Description and Comparison between Segmental and non segmental cases as regards personal data	86
Table (7):	Relation between disease duration and each of lesional and non lesional PGP9.5 and ssDNA among all vitiligo cases	87
Table (8):	Relation between disease duration and each of lesional and non lesional PGP9.5 and ssDNA among non segmental vitiligo cases	87
Table (9):	Relation between disease duration and each of lesional and non lesional PGP9.5 and ssDNA among segmental vitiligo cases	88
Table (10):	Description of lesional and non lesional PGP9.5 and ssDNA among study cases	89
Table (11):	Comparison between lesional and non lesional PGP9.5 among segmental vitiligo cases	89
Table (12):	Comparison between lesional and non lesional PGP9.5 among non segmental vitiligo cases	89
Table (13):	Comparison between lesional and non lesional ssDNA among segmental vitiligo cases	90
Table (14):	Comparison between lesional and non lesional ssDNA among non segmental vitiligo cases	90
Table (15):	Comparison between lesional segmental cases and controls as regards PGP9.5 and ssDNA	91
Table (16):	Comparison between lesional non segmental cases and controls as regards PGP9.5 and ssDNA	91
Table (17):	Comparison between lesional and non lesional PGP9.5 among all vitiligo cases	92
Table (18):	Comparison between lesional and non lesional ssDNA among all vitiligo cases	93
Table (19):	Comparison between non lesional non segmental cases and controls as regards PGP9.5 and ssDNA	94
Table (20):	Comparison between non lesional segmental cases and controls as regards PGP9.5 and ssDNA	94
Table (21):	Comparison between non lesional non segmental cases and controls as regards PGP9.5 and ssDNA.	95
Table (22):	Comparison between Segmental and non segmental vitiligo cases as regards lesional PGP9.5	96
Table (23):	Comparison between Segmental and non segmental vitiligo cases as regards lesional ssDNA	97
LIST OF FIGURES

Figure (1):	Intracellular transformation of tyrosinase into pre-melanin metabolites, and finally into melanin	8
Figure (2):	Differentiation of T helper cell subsets	14
Figure (3):	Cytotoxic T-cells in perilesional skin of active vitiligo	16
Figure (4):	Summary of the possible cellular and humoral immune mechanisms of vitiligo	21
Figure (5):	Different hypotheses for segmental vitiligo	31
Figure (6):	Arguments for destruction of melanocytes by apoptosis	34
Figure (7):	The life cycle of human melanocytes primarily controlled by four factors, namely cAMP, bFGF, ET-1, and SCF	35
Figure (8):	Schematic view of the role of apoptotic keratinocytes in vitiligo	37
Figure (9):	Proposal of a new integrated theory for non-segmental vitiligo	40
Figure (10):	The three main steps of the LSAB technology	79
Figure (11):	Distribution of patients according to gender	86
Figure (12):	Comparison between lesional and non lesional PGP9.5 among all vitiligo cases	92
Figure (13):	Comparison between lesional and non lesional ssDNA among all vitiligo cases	93
Figure (14):	Comparison between non lesional segmental and non segmental cases and controls as regards PGP9.5	95
Figure (15):	Comparison between non lesional segmental and non segmental cases and controls as regards ssDNA	96
Figure (16):	H&E staining in a lesional segmental vitiligo case (x200)	97
Figure (17):	H&E staining in a lesional segmental vitiligo case (x200)	98
Figure (18):	+2 dermal PGP9.5 positive staining in a lesional segmental vitiligo case (immunohistochemical stain,x400)	98
Figure (19):	+1 dermal PGP9.5 positive staining in a non lesional segmental vitiligo case (immunohistochemical stain,x400)	99
Figure (20):	+2 ssDNA positive apoptotic epidermal cells in a lesional segmental vitiligo case (immunohistochemical stain,x400)	99
Figure (21):	+1 ssDNA positive apoptotic epidermal cells in a non lesional segmental vitiligo case (immunohistochemical stain,x400)	100
Figure (22):	H&E staining in a lesional non segmental vitiligo case (x200)	100
Figure (23):	H&E staining in a non lesional non segmental vitiligo case (x200)	101
Figure (24):	+3 dermal PGP9.5 positive staining in a lesional non segmental vitiligo case (immunohistochemical stain,x400)	101
Figure (25): +1 dermal PGP9.5 positive staining in a lesional non segmental vitiligo case (immunohistochemical stain,x400)…… 102
Figure (26): +3 ssDNA positive apoptotic epidermal cells in a lesional non segmental vitiligo case (immunohistochemical stain,x400)…… 102
Figure (27): +1 ssDNA positive apoptotic epidermal cells in a lesional non segmental vitiligo case (immunohistochemical stain,x400)…… 103
Figure (28): H&E staining in a control case (x400).......................... 103
Figure (29): +1 dermal PGP9.5 positive staining in a control case (immunohistochemical stain,x200).......................... 104
Figure (30): +1 ssDNA positive apoptotic epidermal cells in a control case (immunohistochemical stain,x400).......................... 104
A. INTRODUCTION

Vitiligo is an acquired dermatologic disorder characterized by loss of functioning melanocytes, resulting in depigmentation of the skin. (Tobin et al., 2000; Solano et al., 2006; Van Geel et al., 2014).

The mechanisms underlying the destruction of functioning melanocytes and the absence of melanin in vitiligo lesions remain unclear. Nevertheless, certain theories have been suggested and studied including; the genetic hypothesis, the autoimmune hypothesis, the neural hypothesis (involving neuropeptides, adrenergic and cholinergic neurotransmitters), the apoptotic theory, the viral hypothesis, the self destruction hypothesis (including the significant contribution of oxidative stress through the accumulation of H2O2), and convergence theory (which combines previous theories). (Cucchi et al., 2000; Dell’Anna et al., 2003; Gauthier et al., 2003; Ortonne, 2003; Hasse et al., 2004; Schallreuter et al., 2006; Solano et al., 2006).

Developmentally, melanoblasts are derived from the neural crest, and so it is not surprising that an association between neurological disorders and changes in skin pigmentation can often be found. The segmental distribution of vitiligo, and the association of vitiligo with peripheral nerve injury, viral encephalitis, horner’s syndrome and diabetic neuropathy, supports the neurological theory in vitiligo (Al’Abadie et al., 1994; Liu et al., 1999).

Protein gene product 9.5 (PGP 9.5) is a general marker for all cutaneous sensory and autonomic nerve fibers. It has been studied in skin biopsies of various dermatologic disorders (McArthur et al., 1998; Omdal et al., 2002; Antunes et al., 2003; Ebnezer and Daniel, 2004).

Studies of PGP 9.5 in vitiligo have been performed. One study showed a minimal increase in PGP 9.5 positive nerve fibers at the dermoepidermal junction and lower malpighian layers in patients with vitiligo at the periphery of the lesion relative to normal skin.
(Al’Abadie et al., 1994). Other reported no difference in PGP 9.5 positive nerve fibers between lesional, nonlesional, and normal skin in patients with vitiligo (Liu et al., 1999). However, recently Aroni et al., 2008 detected a statistically significant difference in the number of PGP 9.5-positive nerve fibers/axons in the papillary dermis between the centre and periphery of the lesions of vitiligo (i.e. increased at the center in comparison with the periphery).

A few controversial theories have been studied concerning the role of apoptosis in vitiligo. The lack of evidence for the involvement of this process has been reported in several studies (Tobin et al., 2000; Van den Wijngaard et al., 2000a). However vitiligo as a manifestation of apoptosis is supported by its histopathological findings, and is particularly evident from the changes at the border between the depigmented and clinically normal (uninvolved) skin (Kovarik et al., 2009).

A monoclonal immunoglobulin M (IgM) antibody was used by Aroni et al., 2008 against single strand DNA (ssDNA), which specifically stains the apoptotic cells and has been applied in vitiligo to differentiate between apoptotic and necrotic cells.

On the basis of dermal PGP 9.5-positive nerve fibers and ssDNA-positive (apoptotic) cells, Aroni et al., 2008 concluded that there is a relationship between the autonomic nerve system function and apoptosis, supporting the hypothesis that the destruction of functioning melanocytes in vitiligo could be the end result of different interacting pathogenic mechanism, such as apoptosis and accumulation of neural fibers/axons.
B. AIM OF THE WORK

The aim of this work is to study the possible contribution of either the neural mechanism or apoptotic mechanism or both together in the etiopathogenesis of generalized and segmental vitiligo variants. This was done through immunohistochemical study of PGP9.5 as evidence of neural mechanism and ssDNA as an evidence of apoptotic mechanism in vitiligo.