MONITORING MOISTURE DISTRIBUTION UNDER SOME IRRIGATION SYSTEMS IN DIFFERENT SOILS

By

SABER ATTIA ELBENDARY OMAR

B.Sc. Agric. Sc. (Soil Science), Ain Shams University ,1992

A thesis submitted in partial fulfillment

of

the requirements for the degree of

MASTER OF SCIENCE

in

Agricultural Science

(Soil Science)

Department of Soil Science Faculty of Agriculture Ain Shams University

2012

Approval Sheet

MONITORING MOISTURE DISTRIBUTION UNDER SOME IRRIGATION SYSTEMS IN DIFFERENT SOILS

By

SABER ATTIA ELBENDARY OMER

B.Sc. Agric. Sc. (Soil Science), Ain Shams University, 1992

This thesis for M. Sc. degree has been approval by:

Dr. J	Essam El-Din Abd Elmonem	Wassif	
]	Head of Research, Agricultural Agricultural Research Center	Engineering Research	Institute

Dr. Moneir Abdo Aziz

Prof. Emeritus of soil science, Faculty

of Agriculture, Ain Shams University

Associate prof. of Agriculture Engineering , Faculty of Agricultur, Ain Shams University

Dr. Mohamed El-sayed Galal	
Prof. of soil physics Faculty	

Prof. of soil physics, Faculty of Agriculture , Ain Shams University

Date of Examination: 22 / 4 / 2012

MONITORING MOISTURE DISTRIBUTION UNDER SOME IRRIGATION SYSTEMS IN DIFFERENT SOILS

By

SABER ATTIA ELBENDARY OMER

B.Sc. Agric. Sc. (Soil Science), Ain Shams University, 1992

Under the supervision of:

Dr. Mohamed El-sayed Galal

Prof .of soil physics, Department of Soil Science,

Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Yasser Ezzat Arafa

Associate prof. of Agricultural Engineering Department of Agriculture Engineering, Faculty of Agriculture, Ain Shams University

Dr. Mohamed Sief Eldeen Abd Elwahed

Assistant Prof .of soil science, Department of Soil Science,

Faculty of Agriculture, Ain Shams University

ACKNOWLEDGMENT

The author wishes to express his sincere thanks, deepest gratitude and appreciation to **Prof. Dr. Mohamed El-Sayed Galal** Professor of Soil physics; Department of Soil Science, Faculty of Agriculture, Ain Shams University; **Dr. Yasser Ezzat Arafa**, Associate Professor of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University; and **Dr. Mohamed Sief Eldeen Abd- Elwahed**, Assistant Professor of Soil Science, Department of Soil Science . Faculty of Agriculture, Ain Shams University, for their support and introducing all facilities needed through the whole investigation, their scientific contribution and writing this manuscript.

The author wishes also to express his gratefulness and thanks to leaders of Academy of Scientific Research and Technology especially the leaders of the councils research sector for their help and support to throughout the whole investigation.

Thanks are due to all staff members of Soil Science Department, Faculty of Agriculture Ain Shams University, for their help throughout the time of this work. Many thanks for all guided me to complete this work .

Special thanks for my family because they are the source of hopefulness and who suffered with me during all time of work.

جامعة عين شمس

كلية الزراعة

رسالة ماجستير أسم الطالب: صابر عطيه البندارى عمر عنوان الرسالة : تتبع التوزيع الرطوبى تحت بعض نظم الرى فى أراضى

أسم الدرجـــة : ماجستير في العلوم الزراعية (أراضي)

- لجنة الإشراف :
- د . محمد السيد جلال
 أستاذ طبيعة الاراضى ، قسم علوم الأراضى ، كلية الزراعة جامعة عين شمس
 (المشرف الرئيسى)
 د. ياسر عزت عرفه
 أستاذ الهندسة زراعية المساعد ، قسم الهندسة الزراعية ، كلية الزراعة جامعة عين شمس
 د. محمد سيف الدين عبد الواحد
 مدرس علوم الأراضى، قسم علوم الأراضى ، كلية الزراعة، جامعة عين شمس

تاريخ التسجيل: 2008/10/13 الدراسات العليا ختم الإجازة أجيزت الرسالة بتاريخ 2012 / 4 / 22 موافقة مجلس الكلية مجلس الجامعة 2012 / / / 2012

صفحة الموافقة على الرسالة

تتبع التوزيع الرطوبي تحت بعض نظم الرى في أراضي مختلفة

رسالة مقدمة من

صابر عطیة البنداری عمر بکالوریوس علوم زراعیة (أراضی)، جامعةعین شمس 1992

وقد تمت مناقشة الرسالة والموافقة عليها

اللجنة

د. عصام الدين عبد المنعم واصف رئيس بحوث ، معهد بحوث الهندسة الزراعية ، مركز البحوث الزراعية د. منير عـبده عـزيـز أستاذ غير متفرغ قسم علوم الأراضى ، كلية الزراعة ، جامعة عين شمس د. ياسر عرزت عرفه أستاذ الهندسة الزراعية المساعد ، كلية الزراعة، جامعة عين شمس د. محمـد السيد جـلال أستاذ طبيعة الاراضى ، كلية الزراعة جامعة عين شمس

تاريخ المناقشة 22 / 4 /2012

تتبع التوزيع الرطوبى تحت بعض نظم الرى فى أراضى مختلفة

رسالة مقدمة من

صابر عطية البندارى عمر

بكالوريوس علوم زراعية (أراضي) تحين شمس 1992

2012

ABSTRACT

Saber Attia Elbendary Omar: Monitoring Moisture Distribution Under Some Irrigation Systems in Different Soils. Unpublished M.Sc. Thesis, Department of Soil Science, Faculty of Agriculture, Ain Shams University, 2012.

Soil moisture is an important factor across a range of environmental processes including plant growth; soil biogeochemistry; erosion; and land atmosphere heat and water exchange. Timely and accurate estimates of soil moisture are therefore highly desirable for understanding and modeling these processes. Moreover remote sensing approaches have primarily focused on microwave wavelength, were moisture exits strong control over soil dielectric properties. Therefore, the aim of this investigation was to study the effect of uniformity of water distribution on soil moisture distribution under center pivot irrigation system as functions of both soil hydrophysical properties and time. Uniformity of water application pattern as a function of time was also concerned. Field experiments was carried out in the experimental farm of faculty of agriculture; Ain Shams University, El-Kantar city, Kalubia Governorate. The studied area is located between longitude 30° 12⁻ 53⁼, 30° 12⁻ 53⁼, 30° 12⁻ 50⁻,30° 12⁻ 51⁻ -E and latitude 31° 08⁻ 01⁻,31° 07⁻ 57⁻,31° 07⁻ 58⁻, 31° $08^{-}01^{-}$ - N. To study the effect of uniformity of water distribution from the tower on water distribution of the surface soil as functions of both soil hydrophysical properties and time, water collector cans of 15 cm diameter and 23 cm height were spread on a grid distribution with 11 * 10 lines and the distance between each others was 10 meters to estimate uniformity coefficient of applied water from central pivot tower.

Reflectance spectrometer was used to detect soil water content and its attributed distribution pattern as a function of irrigation event's time compared with the gravimetrically method. Generally, uniformity of water application pattern was 78.4% while in the soil, uniformity of water distribution was different with time. Redistribution of soil water is the main process which makes the soil tended to equilibrate, consequently uniformity of water distribution were increased as a function of time after irrigation events cutt of , 81.2%, 85.3%, 92.7% 95.6%, and 97.4% for 1-h, 24h, 48h, 72h and 96h.

Concerning, the effect of soil hydrophysical properties on water distribution pattern profile in the soil, water depletion equation was calculated. The high values of coefficient of determination (\mathbb{R}^2) were found at high soil water levels; after one hour, between the reflectance values at 700 nm (Red-NIR) wavelength and the volumetric water content (\mathbb{R}^2 = 0.9). On the other hand, after one hour, the values of \mathbb{R}^2 decreased with decreasing the wavelength from 700 nm to 470 nm. So, portable reflectance spectrometer can be used to detect soil water content with 700 nm (Red-NIR) wavelength at saturation and near saturation conditions.

Keywords: Soil Moisture, Moisture Distribution, Reflectance, VIS, NIR, Reflectance spectrometer, Uniformity of Water Distribution, Center Pivot

CONTENTS

LIST OF TABLES	IV
LIST OF FIGURES	VI
1-INTRODUCTION	1
2- REVIEW OF LITERATURE	3
2.1. History and Characterizes affecting performance analysis of Center pivot irrigation system:	3
2.2 Monitoring soil water content	8
2.3. Background of the used instrument	9
2.4. Factors affecting water distribution under pivot system	10
2.5. Effects of low efficiency of water distribution	15
2.6. Effect of water on spectral properties of soils:	18
3- MATERIALS AND METHODS	21
3.1. Description of the Experimental Site	21
3.2 .1 Physical and hydro-physical properties of the studied soil	21
3.2.2 Soil hydraulic properties	21
3.2.3 Some soil physical properties	22
3.2.4 Some Chemical properties of the studied soil:	24

3.2.5 Some chemical properties of irrigation water:	24
3.2.6 Irrigation system	25
3.2.6.1 Procedures of technical evaluations of Center pivot irrigation system.	25
3.2.6.1.1 Evaluation of uniformity:	27
3.2.6.2 Coefficient of uniformity (CU):	27
3.2.6.3 Coefficient of variation (CV):	28
3.2.7. Soil water relationship measurements	28
3.3. Evaluation Procedures	33
3.3.1 Reflectance spectrometry measurements	33
3.3.2 General Description of Reflectance spectrometer ALTA	35
3.3.3.Calibration of reflectance spectrometer	37
3.3.4. Soil samples collection and analysis	39
3.3.5 Evaluation of on. Farm irrigation water distribution uniformity	39
3.3.5.1 Distribution Uniformity	39
3.3.5.2 Low Quarter Distribution Uniformity (DUlq)	39
3.4. Statistical analysis	40
4- RESULTS AND DISCUSSION	42
4.1.1. Correlation coefficient	42

- 4.2. Soil water relationship of the investigated soil. However 44 data analysis.
- 4.3. Soil water distribution under center pivot irrigation 48 system based on the volumetric investigation method.
- 4.4. Soil –water distribution under center pivot irrigation 59 system based on the soil –spectral investigation method.

5- SUMMARY	69
6-REFERENCES	71
7-Appendix	82

Arabic summery

LIST OF TABLES

Table (1): Some physical properties of the studied soil	23
Table (2):Some chemical properties of the studied soil	23
Table (3): Some chemical properties of irrigation water	23
Table (4): Locations of the soil samples and water cans on the studied area	30
Table (5). White photocopy paper was used to measure the reflectance standard	38
Table (6) Ranked of DU under sprinkler irrigation system.	41
Table (7): Effect of operating pressure on CU and DU under center pivot irrigation system.	43
Table (8) :Correlation coefficient between the uniformity parameters and operating pressure.	43
Table (9) Calibration equations between wave lengths "Y"	55
of portable reflectance spectrometer and soil water content () on volume basis.	

Table (10) Correlation coefficients (r) between the determined soil56water content and estimated values using the obtained fittingequation with different wave lengths of portable reflectancespectrometer. (cm^3/cm^3) at (0 - 5 cm) cm soil depth using differentwave lengths of portable reflectance spectrometer

Table (11): The values of coefficients of determination (R²) and 67 the linear equations for the relationship between the volumetric water content and % reflectance.

Table (12):Values of standard deviation of both measured and68predicted soil water content () and covariancebetween them under different values of wave lengths

LIST OF FIGURES

Fig 1: Layout of the experimental position of soil samples and	29
water collector	
Fig 2 : Reflectance spectrometer ALTA	34
Fig 3 : Percentage of Light-emitting the reflectance spectrometer ALTA	38
Fig 4 : Water characteristics curve of	45
the studied soil in log scale	
Fig 5: Water characteristics curve of	46
the studied soil in linear scale	
Fig 6 : Accumulative collected water (cm) at different positions of the pivot round cycle.	47
Fig7 : Soil water content (cm^3/cm^3) under pivot after 1 – hr. of ending irrigation process	49
Fig 8: Soil water content (cm^3/cm^3) under pivot after 24 – hr. of ending irrigation process	50
Fig 9 : Soil water content (cm ³ /cm ³) under pivot after 48 – hr. of ending irrigation process	51
Fig 10 : Soil water content (cm ³ /cm ³) under pivot after 72 – hr. of ending irrigation process.)	52
Fig 11 : Soil water content (cm ³ /cm ³) under pivot after 96 – hr. of ending irrigation process	53
Fig 12 : Water depletion curve of the studied soil as a function of time after ending irrigation process	58
Fig 13 : Water distribution along a diameter of a center-pivot	60
irrigation system after one hr. (See appendix)	