NUTRITIONAL SUPPORT IN CRITICALLY ILL PATIENTS WITH ACUTE KIDNEY INJURY

An Essay

Submitted in Partial Fulfillment of the Master's Degree in Intensive Care

> By Mohamed Mansour Hassan Mansour M.B., B.Ch.

Under Supervision of Prof. Dr. Gehan Fouad Kamel

Professor of Anesthesiology and Intensive Care Faculty of Medicine, Ain Shams University

Prof. Dr. Sameh Michel Hakim

Professor of Anesthesiology and Intensive Care Faculty of Medicine, Ain Shams University

Dr. Rania Maher Hussien

Lecturer in Anesthesiology and Intensive Care Faculty of Medicine, Ain Shams University

> Ain Shams University Faculty of Medicine 2012

Acknowledgment

Thanks to God, the most merciful and the most kind

I would like to express my deepest gratitude to:

Prof. Dr. Gehan Fouad Kamel

Professor of Anaesthesiology and Intensive care Medicine, Faculty of Medicine – Ain Shams University, who has offered me much of her valuable experience advice and whose paternal attitude and moral support can not be praised enough with word.

I feel much obliged to:

Prof. Dr. Sameh Michel Hakim

Professor of Anaesthesiology and Intensive care Medicine, Faculty of Medicine – Ain Shams University. And thanks for his encouragement. **Great thanks to:**

Dr. Rania Maher Hussien

Lecturer of Anaesthesiology and Intensive care Medicine, Faculty of Medicine – Ain Shams University. I will never be able to express my feelings and gratitude towards her with simple words, and I wish to be able one day to return apart of what she has offered to me.

Finally, I am very thankful to all staff of the Anaesthesia department for their help and cooperation.

Mohamed Mansour Hassan

List of Contents

Title	Page No.
Introduction	1
Aim of the Work	4
Chapter (I): Acute Kidney Injury in the Critically Ill	5
Chapter (II): Nutritional and Metabolic Alterations in Critically Ill Patients with Acute Kidney Injury	
Chapter (III): Nutritional Assessment in Acute Kidney Injury	70
Chapter (IV): Principles of Nutritional Support in Critically Ill Patients with Acute Kidney Injury	
Summary	111
References	114
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Classification/staging systems for acute injury	
Table (2):	Common Causes of AKI in the ICU	
Table (3):	Common nephrotoxins that cause acute injury in ICU patients	2
Table (4):	Factors involved in the pathogenesis of catabolism in AKI	1
Table (5):	Nutritional markers and their limitations i kidney injury patients	
Table (6):	Goals of nutritional support in AKI.	
Table (7):	Nutritional requriments in patints with kidney injury.	

List of Figures

Fig. No.	Title	Р	Page No.	
Figure (1):	Decision tree for r patients with AKI and	11		

or who are at risk for protein-energy wasting......110

List of Abbreviations

Abb.	Full term
ACE	Angiotensin-Converting Enzyme
AIN	Acute Interstitial Nephritis
AKI	Acute Kidney Injury
AKIN	Acute Kidney Injury Network
ARDS	Acute Respirtory Distress Sydrome
ARF	Acute Renal Failure
ATN	Acute Tubule Necrosis
AUC	Area Under The Curve
BEE	Basal Energy Expenditure
BIA	Bioelectrical Impedance Analysis
BMC	Basal Metabolic Chart
BMI	Body Mass Index
BUN	Blood Urea Nitrogen
BW	Body Weight
CIN	Contrast- Induced Nephropathy
CKD	Chronic Kidney Disease
CO_2	Carbon Dioxide
СРВ	Cardio-Pulmonary Bypass
CRP	C-Reactive Protein
CRRT	Continuous Renal Replacement Therapy
CVVH	Continuous Veno- Venous Haemodialysis.
CVVHDF	Continuous Venovenous Hemodiafiltration
EAA	Essential Amino Acids
EE	Energy Expenditure
EN	Enteral Nutrition
ESPEN	European Society of Parentral and Enteral Nutrition
FeNa	Fractional Excretion Of Sodium
GI	Gastrointestinal
GFR	Glomerular Filtration Rate
HDL	High-Density Lipoprotein
HIV	Human Immunodeficiency Virus
HRS	Hepatorenal Syndrome
HUS	Hemolytic-Uremic Syndrome
ICU	Intensive Care Unit
IGF-1	Insulin-like Growth Factor-1
IGF-2	Insulin-like Growth Factor-2

IL-8	Interleukin-18
INOS	Inducible Nitric Oxide Synthase
ISRNM	International Society of Renal Nutrition and Metabolism
kDa	Kilodaltons
KIM-1	Kidney Injury Molecule-1
LCT	Long-Chain Triglyceride
LDL	Low-Density Lipoprotein
MCT	Medium-Chain Triglycerides
MOD	Multiple Organ Dysfunction
NAC	N-Acetylcysteine
NAG	N -Acetyl- β -(D)-Glucosaminidase
NEAA	Non Essential Amino Acids
NGAL	Neutrophil Gelatinase-Associated Lipocalin
NSAIDS	Non-Steroidal Anti-Inflammatory Drugs
PCT	Proximal Convoluted Tubule
PEW	Protein-Energy-Wasting
PICARD	Program to Improve Care in Acute Renal Disease
PN	Parenteral Nutrition
pNGAL	Plasma NGAL
RCT	Randomized Controlled Trials
REE	Resting Energy Expenditure
RIFLE	Risk, Injury, Failure, Loss, End Stage Kidney Disease
RRT	Renal Replacement Therapy
SAFE	Saline versus Albumin Fluid Evaluation
SCr	Serum Creatinine
SGA	Subjective Global Assessment
SIRS	Systemic Inflammatory Response Syndrome
SLED	Sustained Low-Efficiency Dialysis
SOAP	Simple Object Access Protocol
TTP	Thrombotic Thrombocytopenic Purpura
uNGAL	Urinary NGAL
US	United States
UOP	Urine Output
VLDL	Very-Low-Density Lipoprotein

INTRODUCTION

Acute kidney injury (AKI) is a complex and heterogeneous syndrome occurring in different clinical settings, especially in the intensive care unit (ICU) (Himmelfarb and Ikizler, 2007; Xue et al., 2006).

AKI can be defined as an abrupt (within 48 h) reduction in kidney function with an absolute increase in serum creatinine of either $\ge 0.3 \text{ mg/dl}$ ($\ge 0.25 \mu \text{mol/l}$) or a percentage increase of $\ge 50\%$ or a reduction in urine output of $\le 0.5 \text{ ml/kg/h}$ for >6 h. The incidence of AKI is increasing, with incidence rates of 3%-10% observed among hospitalized patients, which can rise up to 10%-30% in those admitted to the ICU (Mehta et al., 2007).

Patients with AKI have a high prevalence of malnutrition. AKI develops mostly in the context of critical illness and multiple organ dysfunction (MOD), which are associated with major changes in substrate metabolism and body composition. Key effectors of these changes are a host of inflammatory mediators and neuroendocrine alterations. The development of AKI further adds fluid overload, azotemia, acidosis, and electrolyte disturbances to these changes (Fiaccadori et al., 1999; Himmelfarb et al., 2006).

The evaluation of nutritional status can be difficult in critically ill patients, especially if AKI is present, and

traditional methods in this clinical setting have shown limited sensitivity and specificity (Fiaccadori et al., 1999).

To better characterize the condition of lean body mass wasting and fat mass depletion occurring in AKI, the term 'protein-energy wasting' (PEW) has been recently proposed, along with the recommendation to use four categories of diagnostic criteria: biochemical markers (such as albumin or prealbumin), body weight loss, decreased muscle mass and low energy and protein intakes (Fouque et al., 2008).

PEW seems to be a frequent problem in AKI. As a matter of fact, severe malnutrition, as defined by the Subjective Global Assessment (SGA), can be observed in about 40% of patients with AKI in the ICU. Many factors are likely to contribute to PEW in these patients, including inadequate nutritional support, preexisting poor nutritional status, superimposed catabolic illnesses (sepsis, trauma, surgery, chemotherapy, etc.), acidosis, blood losses, nutrient losses during extracorporeal circulation, etc. **(Fouque et al., 2008).**

Nutritional status is a major prognostic factor in the patients with AKI. Severe PEW severely impairs patient's outcome, whether defined in terms of length of hospital stay, increased risk of complications (sepsis, bleeding, arrhythmia, respiratory failure, etc.) or increased in-hospital mortality, along with other well-known complications and co-morbidities of AKI. Thus, it is likely that optimizing nutritional status and

preventing nutritional status deterioration could improve patient outcome (Fiaccadori et al., 1999; Guimaraes et al., 2008).

The timing, route, and ideal composition of ICU nutritional support remain a matter of discussion and even official guidelines and consensus statements are not always consistent. Feeding of critically ill patients should be started early. Early nutrition is defined as the initiation of nutritional therapy within 48 hours of either hospital admission or surgery.

The traditional ICU doctrine is that enteral nutrition is always better than parenteral nutrition because it keeps the intestinal mucosa active and reduces bacterial translocation (De Aguilar-Nascimento and Kudsk, 2008).

AIM OF THE WORK

The aim of this study is to review the metabolic alterations underlying critical illness and AKI, to discuss nutritional and metabolic support in these patients, and to address the nutritional implication of continuous renal replacement therapy.

Chapter I

ACUTE KIDNEY INJURY IN THE CRITICALLY ILL

Acute kidney injury (AKI), previously termed acute renal failure, refers to a sudden decline in kidney function causing disturbances in fluid, electrolyte, and acid-base balance because of a loss in small solute clearance and decreased glomerular filtration rate (GFR). The nomenclature shift to AKI more accurately represents the spectrum of disease from subclinical injury to complete organ failure.

Acute kidney injury is common in critically ill patients and is associated with significant morbidity and mortality. This requires clinicians to be familiar with recent advances in definitions, diagnosis, prevention, and management of acute kidney injury in the intensive care unit. The purpose of this concise review, therefore, is to address, for the nonnephrologist, clinically relevant topical questions regarding acute kidney injury in the intensive care unit (**Dennen et al.**, **2010**).

Definition of AKI

More than 35 definitions of AKI currently exist in the literature. The Acute Dialysis Quality Initiative convened in 2002 and proposed the Risk, Injury, Failure, Loss, End Stage

Kidney Disease (RIFLE) classification specifically for AKI in critically ill patients (Table 1) (Bellomo et al., 2004).

Using serum creatinine (SCr) and urine output, the RIFLE criteria define three grades of severity and two outcome classes. The most severe with primary kidney diseases such as glomerulonephritis were excluded from this definition. More recently the Acute Kidney Injury Network (AKIN), an international multidisciplinary organization composed of nephrologists and intensivists, further modified the RIFLE criteria recognizing that even very small changes in SCr (≥ 0.3 mg/dl) adversely impact clinical outcome (Hoste et al., 2006; Ostermann and Chang, 2007).

According to the AKIN, the most current consensus diagnostic criteria for AKI is "an abrupt (within 48 hrs) reduction in kidney function currently defined as an absolute increase in serum creatinine of more than or equal to 0.3 mg/dl (\geq 26.4 µmol/l), a percentage increase in serum creatinine of \geq 50% (1.5-fold from baseline), or a reduction in urine output (documented oliguria of < 0.5 ml/kg/hr for > 6 hrs). Importantly, the AKIN definition and classification system incorporates creatinine, urine output, and time (Table 1) (Mehta et al., 2007).

Both the RIFLE and AKIN criteria were developed to facilitate clinical investigation and comparison across study populations. Epidemiologic data comparing the RIFLE and

AKIN criteria have demonstrated concordance in critically ill patients (Bagshaw et al., 2008; Lopes et al., 2008).

			AKIN		
RIFLE	SCr Criteria	UOP Criteria		SCr Criteria	UOP Criteria
			Stage		
R	↑ SCr×1.5	< 0.5 ml/kg/hr × 6 hrs	1	$ \begin{array}{l} \uparrow \text{in SCr} \geq 0.3 \\ \text{mg/dL or} \uparrow \geq \\ 150\% \text{ to} \\ 200\% \text{ from} \\ \text{baseline (1.5-to 2-fold)} \end{array} $	< 0.5 ml/kg/hr for > 8 hrs
Ι	↑ SCr×2	< 0.5 ml/kg/hr × 12 hrs	2	<pre>↑in SCr to > 200% to 300% from baseline (>2- to 3-fold)</pre>	< 0.5 ml/kg/hr for > 12 hrs
F	↑ SCr×3, or SCr ≥4 mg/dL with an acute rise of at least 0.5 mg/dL	< 0.5 ml/kg/hr × 24 hrs or anuria × 12 hrs	3	\uparrow in SCr to > 300% (3- fold) from baseline or SCr \geq 4 mg/dL with an acute rise of at least 0.5 mg/dL	< 0.5 ml/kg/hr × 24 hrs or anuria × 12 hrs
L	Persistent loss of kidney function for >4 wks				
Е	Persistent loss of kidney function for >3 months				

 Table (1):
 Classification/staging systems for acute kidney injury

AKIN, acute kidney injury network; RIFLE, risk, injury, failure, loss, endstage kidney disease; SCr, serum creatinine; UOP, urine output. Adapted from **Mehta et al. (2007).**